Pregunta
\[ \text{Find } 2011^2 - 2010^2 \text{?} \]
Ask by Huang Stuart. in South Africa
Feb 23,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The answer is 4021.
Solución
We can solve 2011² - 2010² using the difference of squares formula, which states that a² - b² = (a + b)(a - b). Plugging in a = 2011 and b = 2010, we get:
2011² - 2010² = (2011 + 2010)(2011 - 2010)
Calculate the sums and differences:
2011 + 2010 = 4021
2011 - 2010 = 1
Thus:
4021 × 1 = 4021
So, the answer is 4021.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To solve \( 2011^2 - 2010^2 \), we can use the difference of squares formula, which states that \( a^2 - b^2 = (a-b)(a+b) \). Here, let \( a = 2011 \) and \( b = 2010 \). Calculating \( a-b \) and \( a+b \): \[ a - b = 2011 - 2010 = 1 \] \[ a + b = 2011 + 2010 = 4021 \] Now, applying the difference of squares: \[ 2011^2 - 2010^2 = (2011 - 2010)(2011 + 2010) = 1 \times 4021 = 4021 \] Thus, \( 2011^2 - 2010^2 = 4021 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium