Pregunta
upstudy study bank question image url

2. (16 pts.) A factory finds that it costs \( \$ 3,600 \) to produce 100 chairs in one day and it costs \( \$ 5,200 \) to produce 300 chairs in one day. (a) Express the daily cost \( C \) as a function of \( x \), where \( x \) is the number of chairs produced. Assume that \( C \) is a lineartion of \( x \). (b) What is the C-intercept of the line and what is its interpretation? (c) What is the slope of this line and what is its interpretation? (e) If the daily cost of producing chairs is \( \$ 5,064 \), use the function to find the number of chairs produced. (d) Use the function to predict the daily cost of producing 470 chairs. (d) (b) ( 10

Ask by Brewer Peters. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The cost function is \( C(x) = 8x + 2800 \). (b) The C-intercept is \$2800, representing fixed costs. (c) The slope is 8, meaning each chair costs \$8 to produce. (d) 283 chairs were produced for \$5064. (e) Producing 470 chairs would cost \$6560.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To determine the daily cost \( C \) as a function of the number of chairs produced \( x \), we need to find the linear equation of the line that passes through the given points. With the data provided, we can derive this linear function. First, let's find the slope \( m \): Given two points, \( (100, 3600) \) and \( (300, 5200) \): \[ m = \frac{C_2 - C_1}{x_2 - x_1} = \frac{5200 - 3600}{300 - 100} = \frac{1600}{200} = 8 \] Now, using point-slope form, we can create the linear cost function: \[ C(x) = mx + b \] We also need to determine \( b \). Using one of the points, for example, \( (100, 3600) \): \[ 3600 = 8(100) + b \implies b = 3600 - 800 = 2800 \] Therefore, the cost function is: \[ C(x) = 8x + 2800 \] Now, let's answer each part of the question: (b) The C-intercept occurs when \( x = 0 \), which gives us \( C(0) = 2800 \). This represents the fixed costs of the factory when no chairs are being produced, meaning it has to spend \( \$ 2,800 \) even without production. (c) The slope of the line is \( 8 \), which means that for each additional chair produced, the daily cost increases by \( \$ 8 \). This increment reflects the variable cost associated with production. (d) To find the number of chairs produced for a daily cost of \( \$ 5,064 \): \[ 5064 = 8x + 2800 \implies 8x = 5064 - 2800 \implies 8x = 2264 \implies x = \frac{2264}{8} = 283 \] Thus, at this cost, the factory produces 283 chairs. (e) To predict the daily cost of producing 470 chairs: \[ C(470) = 8(470) + 2800 = 3760 + 2800 = 6560 \] So, producing 470 chairs will cost the factory \( \$ 6,560 \). In a nutshell, we've derived the cost function, identified the intercept and slope, and solved both production and cost inquiries based on the function! Keep those costs in check, and happy chair-making!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad