Pregunta
upstudy study bank question image url

The point given below is on the terminal side of an angle \( e \). Find the exact value of eachy of the six trigonometric functions of \( \theta \). \( (-24,10) \) \( \sin \theta=\square \) (Simplify your answer. Type an exact answer, using radicals as noeded. Use integens or fractions for any numbers in the expression. Rationalize all denominators.)

Ask by Carrillo Marsh. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- \( \sin \theta = \frac{5}{13} \) - \( \cos \theta = -\frac{12}{13} \) - \( \tan \theta = -\frac{5}{12} \) - \( \csc \theta = \frac{13}{5} \) - \( \sec \theta = -\frac{13}{12} \) - \( \cot \theta = -\frac{12}{5} \)

Solución

To find the six trigonometric functions of the angle \( \theta \) whose terminal side passes through the point \( (-24, 10) \), we first need to determine the radius \( r \) using the coordinates of the point. The radius \( r \) is calculated using the formula: \[ r = \sqrt{x^2 + y^2} \] where \( x = -24 \) and \( y = 10 \). Calculating \( r \): \[ r = \sqrt{(-24)^2 + (10)^2} = \sqrt{576 + 100} = \sqrt{676} = 26 \] Now we can find the six trigonometric functions: 1. **Sine**: \[ \sin \theta = \frac{y}{r} = \frac{10}{26} = \frac{5}{13} \] 2. **Cosine**: \[ \cos \theta = \frac{x}{r} = \frac{-24}{26} = -\frac{12}{13} \] 3. **Tangent**: \[ \tan \theta = \frac{y}{x} = \frac{10}{-24} = -\frac{5}{12} \] 4. **Cosecant** (the reciprocal of sine): \[ \csc \theta = \frac{r}{y} = \frac{26}{10} = \frac{13}{5} \] 5. **Secant** (the reciprocal of cosine): \[ \sec \theta = \frac{r}{x} = \frac{26}{-24} = -\frac{13}{12} \] 6. **Cotangent** (the reciprocal of tangent): \[ \cot \theta = \frac{x}{y} = \frac{-24}{10} = -\frac{12}{5} \] Now we can summarize the values of the six trigonometric functions: - \( \sin \theta = \frac{5}{13} \) - \( \cos \theta = -\frac{12}{13} \) - \( \tan \theta = -\frac{5}{12} \) - \( \csc \theta = \frac{13}{5} \) - \( \sec \theta = -\frac{13}{12} \) - \( \cot \theta = -\frac{12}{5} \) Thus, the exact values of the six trigonometric functions of \( \theta \) are: - \( \sin \theta = \frac{5}{13} \) - \( \cos \theta = -\frac{12}{13} \) - \( \tan \theta = -\frac{5}{12} \) - \( \csc \theta = \frac{13}{5} \) - \( \sec \theta = -\frac{13}{12} \) - \( \cot \theta = -\frac{12}{5} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the six trigonometric functions of the angle \( \theta \) whose terminal side passes through the point \((-24, 10)\), we first need to calculate the radius \( r \) which can be found using the Pythagorean theorem: \[ r = \sqrt{x^2 + y^2} = \sqrt{(-24)^2 + (10)^2} = \sqrt{576 + 100} = \sqrt{676} = 26. \] Now, using the point \((-24, 10)\) and \( r = 26\), we can find the trigonometric functions: 1. \( \sin \theta = \frac{y}{r} = \frac{10}{26} = \frac{5}{13} \). 2. \( \cos \theta = \frac{x}{r} = \frac{-24}{26} = -\frac{12}{13} \). 3. \( \tan \theta = \frac{y}{x} = \frac{10}{-24} = -\frac{5}{12} \). 4. \( \csc \theta = \frac{r}{y} = \frac{26}{10} = \frac{13}{5} \). 5. \( \sec \theta = \frac{r}{x} = \frac{26}{-24} = -\frac{13}{12} \). 6. \( \cot \theta = \frac{x}{y} = \frac{-24}{10} = -\frac{12}{5} \). Now we have: \[ \sin \theta = \frac{5}{13}, \quad \cos \theta = -\frac{12}{13}, \quad \tan \theta = -\frac{5}{12}, \] \[ \csc \theta = \frac{13}{5}, \quad \sec \theta = -\frac{13}{12}, \quad \cot \theta = -\frac{12}{5}. \]

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad