The point given below is on the terminal side of an angle \( e \). Find the exact value of eachy of the six trigonometric functions of \( \theta \). \( (-24,10) \) \( \sin \theta=\square \) (Simplify your answer. Type an exact answer, using radicals as noeded. Use integens or fractions for any numbers in the expression. Rationalize all denominators.)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To find the six trigonometric functions of the angle \( \theta \) whose terminal side passes through the point \((-24, 10)\), we first need to calculate the radius \( r \) which can be found using the Pythagorean theorem: \[ r = \sqrt{x^2 + y^2} = \sqrt{(-24)^2 + (10)^2} = \sqrt{576 + 100} = \sqrt{676} = 26. \] Now, using the point \((-24, 10)\) and \( r = 26\), we can find the trigonometric functions: 1. \( \sin \theta = \frac{y}{r} = \frac{10}{26} = \frac{5}{13} \). 2. \( \cos \theta = \frac{x}{r} = \frac{-24}{26} = -\frac{12}{13} \). 3. \( \tan \theta = \frac{y}{x} = \frac{10}{-24} = -\frac{5}{12} \). 4. \( \csc \theta = \frac{r}{y} = \frac{26}{10} = \frac{13}{5} \). 5. \( \sec \theta = \frac{r}{x} = \frac{26}{-24} = -\frac{13}{12} \). 6. \( \cot \theta = \frac{x}{y} = \frac{-24}{10} = -\frac{12}{5} \). Now we have: \[ \sin \theta = \frac{5}{13}, \quad \cos \theta = -\frac{12}{13}, \quad \tan \theta = -\frac{5}{12}, \] \[ \csc \theta = \frac{13}{5}, \quad \sec \theta = -\frac{13}{12}, \quad \cot \theta = -\frac{12}{5}. \]
