Pregunta
upstudy study bank question image url

The blades of a windmill turn on an axis that is 35 feet above the ground. The blades are 10 feet long and complete rotations every minute. Which of the following equations can be used to model \( h \), the height in feet of the end of one as a function of time, \( t \), in seconds? Assume that the blade is pointing to the right, parallel to the ground at \( t=0 \) seco and that the windmill turns counterclockwise at a constant rate. \( h=-10 \sin \left(\frac{\pi}{15} t\right)+35 \) \( h=-10 \sin (\pi f)+35 \) \( h=10 \sin \left(\frac{\pi}{15} t\right)+35 \) \( h=10 \sin (\pi t)+35 \)

Ask by Mcfarlane Montgomery. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct equation to model the height \( h \) of the end of one windmill blade as a function of time \( t \) is: \[ h = -10 \sin \left(\frac{\pi}{15} t\right) + 35 \]

Solución

To model the height of the end of one blade of the windmill as a function of time, we need to consider the motion of the blade. Since the windmill turns counterclockwise at a constant rate, the height of the blade will vary sinusoidally. Given: - The axis of the windmill is 35 feet above the ground. - The blades are 10 feet long. - The blades complete rotations every minute. We can use the equation \( h = -10 \sin \left(\frac{\pi}{15} t\right) + 35 \) to model the height of the end of one blade as a function of time, where \( h \) is the height in feet and \( t \) is the time in seconds. This equation represents a sinusoidal function with a period of 15 seconds (since the blades complete rotations every minute), an amplitude of 10 feet, and a vertical shift of 35 feet. The negative sign in front of the sine function indicates that the blade is pointing to the right, parallel to the ground at \( t = 0 \) seconds. Therefore, the correct equation to model the height of the end of one blade of the windmill as a function of time is: \[ h = -10 \sin \left(\frac{\pi}{15} t\right) + 35 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To model the height \( h \) of the end of the windmill blade, we need to account for the rotation of the blade and its starting position. At \( t=0 \), the blade is horizontal and to the right, so we want to use the cosine function. The height oscillates 10 feet above and below the midpoint, which is 35 feet above the ground. Given that the windmill completes a rotation every minute (or 60 seconds), its angular frequency is \( \frac{2\pi}{60} = \frac{\pi}{30} \). Taking these factors into consideration, the correct model would be one that starts from its highest point at \( t=0 \). The height equation that matches these criteria is \( h = 10 \cos\left(\frac{\pi}{30} t\right) + 35 \), but that option isn't listed. Among the options provided, the closest to being correct (but slightly off in terms of angle because it's sin, not cos) is \( h = -10 \sin\left(\frac{\pi}{15} t\right) + 35 \) as it fits the format needed for height oscillation. Now, let’s talk about how this scenario can be seen in real life: windmills are not just for decoration! They’re essential for converting wind energy into mechanical energy. For example, modern wind turbines rely on similar principles, allowing us to harness renewable energy effectively, powering homes, and reducing reliance on fossil fuels. Isn’t it fascinating how what flies overhead can power our everyday lives? Additionally, in problem-solving, a common mistake is not correctly identifying the starting position of the sine or cosine function. Understanding the phase shift and orientation of your oscillating function can save you lots of headaches. Remember, drawing a diagram can help visualize the problem and clarify where to start - don’t skip this step!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad