Graph all vertical and horizontal asymptotes of the rational function. \[ f(x)=\frac{-6 x-7}{4 x-6} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the vertical asymptotes of the function \( f(x)=\frac{-6 x-7}{4 x-6} \), we set the denominator equal to zero: \[ 4x - 6 = 0 \] Solving for \( x \), we get: \[ 4x = 6 \] \[ x = \frac{3}{2} \] So, there is a vertical asymptote at \( x = \frac{3}{2} \). Next, to find horizontal asymptotes for rational functions, we compare the degrees of the polynomial in the numerator and the denominator. Both the numerator and the denominator are of degree 1. In this case, the horizontal asymptote is found by taking the ratio of the leading coefficients: \[ y = \frac{-6}{4} = -\frac{3}{2} \] Hence, the horizontal asymptote is at \( y = -\frac{3}{2} \). To summarize, the rational function \( f(x)=\frac{-6 x-7}{4 x-6} \) has a vertical asymptote at \( x = \frac{3}{2} \) and a horizontal asymptote at \( y = -\frac{3}{2} \).
