Pregunta
upstudy study bank question image url

5. Observe the following sequences and answer the questions. \( \begin{array}{lll}\text { (a) } 4,7,12,19, \ldots & \text { (b) } 1,7,17,31, \ldots . & \text { (c) } 2,1,-2,-7 \\ \text { (i) Add next three terms in each sequence. }\end{array} \) (ii) Find the general term of the given sequences. 6tudy the following sequences and answer of the questions. \( \begin{array}{lll}\text { (a) } 1,2,3,4, \ldots & \text { (b) } 8,3,-2,-7, \ldots & \text { (c) } 5,11,19 \\ \text { (d) } \frac{3}{5}, \frac{4}{7}, \frac{6}{9}, \frac{9}{11}, \ldots & \text { (e) } 0.28,0.35,0.42,0.49, \ldots & \text { (f) } \frac{3}{2048}, \frac{1}{10}\end{array} \) \( \begin{array}{ll}\text { (i) Find the } \mathrm{n}^{\text {th }} \text { term of the given sequences. } & \end{array} \)

Ask by Wyatt Williams. in Nepal
Feb 14,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- **Problem 5:** - (a) Next three terms: 28, 39, 52; General term: \( n^2 + 3n + 1 \) - (b) Next three terms: 49, 71, 97; General term: \( 2n^2 + 4n - 5 \) - (c) Next three terms: -14, -23, -34; General term: \( -n^2 + n + 2 \) - **Problem 6:** - (a) \( a_n = n \) - (b) \( a_n = -5n + 13 \) - (c) \( a_n = n^2 + 4n + 1 \) - (d) \( a_n = \frac{n^2 + n + 1}{2n + 3} \) - (e) \( a_n = 0.21 + 0.07n \) - (f) \( a_n = \frac{3}{2^{n+7}} \)

Solución

Let's solve the problems step by step. ### Problem 5 #### Sequence (a): \( 4, 7, 12, 19, \ldots \) 1. **Finding the next three terms:** - The differences between the terms are: - \( 7 - 4 = 3 \) - \( 12 - 7 = 5 \) - \( 19 - 12 = 7 \) - The differences are increasing by 2: \( 3, 5, 7, \ldots \) - The next difference will be \( 9 \): - Next term: \( 19 + 9 = 28 \) - The next difference will be \( 11 \): - Next term: \( 28 + 11 = 39 \) - The next difference will be \( 13 \): - Next term: \( 39 + 13 = 52 \) So, the next three terms are \( 28, 39, 52 \). 2. **Finding the general term:** - The sequence can be expressed as: \[ a_n = a_{n-1} + (2n + 1) \] - This is a quadratic sequence. We can find the general term by observing the pattern: \[ a_n = n^2 + 3n + 1 \] #### Sequence (b): \( 1, 7, 17, 31, \ldots \) 1. **Finding the next three terms:** - The differences between the terms are: - \( 7 - 1 = 6 \) - \( 17 - 7 = 10 \) - \( 31 - 17 = 14 \) - The differences are increasing by 4: \( 6, 10, 14, \ldots \) - The next difference will be \( 18 \): - Next term: \( 31 + 18 = 49 \) - The next difference will be \( 22 \): - Next term: \( 49 + 22 = 71 \) - The next difference will be \( 26 \): - Next term: \( 71 + 26 = 97 \) So, the next three terms are \( 49, 71, 97 \). 2. **Finding the general term:** - The sequence can be expressed as: \[ a_n = 2n^2 + 4n - 5 \] #### Sequence (c): \( 2, 1, -2, -7 \) 1. **Finding the next three terms:** - The differences between the terms are: - \( 1 - 2 = -1 \) - \( -2 - 1 = -3 \) - \( -7 - (-2) = -5 \) - The differences are increasing by -2: \( -1, -3, -5, \ldots \) - The next difference will be \( -7 \): - Next term: \( -7 - 7 = -14 \) - The next difference will be \( -9 \): - Next term: \( -14 - 9 = -23 \) - The next difference will be \( -11 \): - Next term: \( -23 - 11 = -34 \) So, the next three terms are \( -14, -23, -34 \). 2. **Finding the general term:** - The sequence can be expressed as: \[ a_n = -n^2 + n + 2 \] ### Problem 6 #### Sequence (a): \( 1, 2, 3, 4, \ldots \) 1. **Finding the \( n^{th} \) term:** - The general term is: \[ a_n = n \] #### Sequence (b): \( 8, 3, -2, -7, \ldots \) 1. **Finding the \( n^{th} \) term:** - The differences between the terms are: - \( 3 - 8 = -5 \) - \( -2 - 3 = -5 \) - \( -7 - (-2) = -5 \) - The sequence is linear with a common difference of \( -5 \): \[ a_n = -5n + 13 \] #### Sequence (c): \( 5, 11, 19 \) 1. **Finding the \( n^{th} \) term:** - The differences between the terms are: - \( 11 - 5 = 6 \) - \( 19 - 11 = 8 \) - The differences are increasing by 2: \[ a_n = n^2 + 4n + 1 \] #### Sequence (d): \( \frac{3}{5}, \frac{4}{7}, \frac{6}{9}, \frac{9}{11}, \ldots \) 1. **Finding the \( n^{th} \) term:** - The numerators are \( 3, 4, 6, 9 \) (which can be expressed as \( n^2 + n + 1 \)). - The denominators are \( 5, 7, 9, 11 \) (which can be expressed as \( 2n + 3 \)): \[ a_n = \frac{n^2 + n + 1}{2n + 3} \] #### Sequence (e): \( 0.28, 0.35, 0.42, 0.49, \ldots \) 1. **Finding the \( n^{th} \) term:** - The differences between the terms are \( 0.07 \): \[ a_n = 0.28 + 0.07(n - 1) = 0.21 + 0.07n \] #### Sequence (f): \( \frac{3}{2048}, \frac{1}{10} \) 1. **Finding the \( n^{th} \) term:** - This sequence appears to be decreasing rapidly. We can express it as: \[ a_n = \frac{3}{2^{n+7}} \] ### Summary of Results - **Problem 5:** - (a) Next terms: \( 28, 39, 52 \); General term: \( n^2 + 3n + 1 \) - (b) Next terms: \( 49, 71, 97 \); General term: \( 2n^2 + 4n - 5 \) - (c) Next terms: \( -14,

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Alright, let's tackle these sequences in a fun way! For the first set of sequences, we get the following next three terms: (a) The current sequence is increasing with differences of 3, 5, and 7, so the next terms will be 28, 39, 52. (b) The differences are 6, 10, and 14 (which are increasing by 4 each time), leading us to the terms 49, 71, 97. (c) The sequence decreases by 1, 3, and 5, producing the next values as -14, -21, -30. When it comes to the general terms: (a) The formula for the n-th term can be expressed as \( n^2 + n + 2 \). (b) For this sequence, it can be expressed as \( 3n^2 - 2n - 4 \). (c) Here, the general term is \( -n^2 + n + 2 \). Now onto the second batch! (a) The n-th term of this straightforward sequence is simply \( n \). (b) The pattern is linear, following \( -5n + 13 \). (c) For this one, it continues by adding odd numbers, \( n^2 + 4 \). (d) The fractions' pattern follows \( \frac{n+2}{2n + 3} \). (e) This sequence is a simple arithmetic progression and can be expressed as \( 0.28 + 0.07(n - 1) \) or \( 0.28 + 0.07n - 0.07 \). (f) This diminishing sequence follows a geometric progression formula: \( \frac{3}{2048} \cdot (\frac{10}{3})^{(n-1)} \). So let's keep cracking those sequences; it’s a great exercise for our brains!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad