Pregunta
upstudy study bank question image url

To paint a wall, Dennis takes \( x \) days to complete one third of the wall when Dennis works alone while Carl takes one more day to complete half of the job when Carl works alone. If it takes 3 days for Dennis and Carl to complete the whole wall when they work together, find \( x \).

Ask by Cox Robbins. in Hong Kong
Feb 14,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( x = 2 \) days

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Mind Expander

To solve this problem, we first need to determine the work rates of Dennis and Carl. 1. **Work Rate of Dennis:** Since Dennis takes \( x \) days to complete one-third of the wall, he can complete the whole wall in \( 3x \) days. Thus, his rate of work is: \[ \text{Dennis's rate} = \frac{1 \text{ wall}}{3x \text{ days}} = \frac{1}{3x} \text{ walls per day} \] 2. **Work Rate of Carl:** Carl takes one more day than Dennis to complete half of the wall. Therefore, if Dennis takes \( 3x \) days for one wall, then Carl takes \( 3x + 1 \) days to complete half of it. Thus, the time he takes to complete the entire wall is: \[ \text{Carl's time for 1 wall} = 2(3x + 1) = 6x + 2 \text{ days} \] His rate of work is then: \[ \text{Carl's rate} = \frac{1}{6x + 2} \text{ walls per day} \] 3. **Combined Work Rate:** When Dennis and Carl work together for 3 days, they complete the wall, which means: \[ 3 \left( \frac{1}{3x} + \frac{1}{6x + 2} \right) = 1 \] 4. **Setting Up the Equation:** Using the combined work rate: \[ \frac{3}{3x} + \frac{3}{6x + 2} = 1 \] We can simplify: \[ \frac{1}{x} + \frac{3}{6x + 2} = 1 \] 5. **Finding a Common Denominator:** The common denominator will be \( x(6x + 2) \). Multiplying throughout by this common denominator gives: \[ (6x + 2) + 3x = x(6x + 2) \] Simplifying the left side results in: \[ 9x + 2 = 6x^2 + 2x \] 6. **Rearranging to Form a Quadratic Equation:** Rearranging gives: \[ 6x^2 - 7x - 2 = 0 \] 7. **Using the Quadratic Formula:** We will now apply the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 6 \), \( b = -7 \), and \( c = -2 \): \[ x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4 \cdot 6 \cdot (-2)}}{2 \cdot 6} \] \[ x = \frac{7 \pm \sqrt{49 + 48}}{12} \] \[ x = \frac{7 \pm \sqrt{97}}{12} \] 8. **Finding the Positive Solution:** Since \( x \) represents days, we are only interested in the positive root: \[ x = \frac{7 + \sqrt{97}}{12} \] Thus, the value of \( x \) is approximately \( 1.72 \) days when calculated numerically.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad