Pregunta
upstudy study bank question image url

12. [-/1 Points] DETAILS MY NOTES LARCALC12 2.4 .085. Find the second derivative of the lunction \[ \begin{array}{l} f(x)=\sin \left(2 x^{2}\right) \\ f(x)=1 \end{array} \] NeedHelp? Fand

Ask by Dickson Goodwin. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The second derivative of \( f(x) = \sin(2x^2) \) is \( f''(x) = 4 \cos(2x^2) - 16x^2 \sin(2x^2) \).

Solución

We are given the function   f(x) = sin(2x²). Step 1. Find the first derivative, f '(x). Using the chain rule, differentiate sin(2x²):   f '(x) = cos(2x²) · d/dx (2x²). Since d/dx (2x²) = 4x, we have   f '(x) = 4x · cos(2x²). Step 2. Find the second derivative, f ''(x). Differentiate f '(x) = 4x cos(2x²) using the product rule:   Let u(x) = 4x  and v(x) = cos(2x²). Then:   f ''(x) = u '(x) v(x) + u(x) v '(x). First, find u '(x):   u '(x) = 4. Next, differentiate v(x) = cos(2x²) using the chain rule:   v '(x) = -sin(2x²) · d/dx (2x²) = -sin(2x²) · 4x = -4x sin(2x²). Now plug these into the product rule formula:   f ''(x) = 4 · cos(2x²) + 4x · [ -4x sin(2x²) ]      = 4 cos(2x²) - 16x² sin(2x²). Thus, the second derivative of f(x) = sin(2x²) is:   f ''(x) = 4 cos(2x²) - 16x² sin(2x²).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the second derivative of the function \( f(x) = \sin(2x^2) \), we first differentiate it once. The first derivative \( f'(x) \) can be found using the chain rule: \[ f'(x) = \cos(2x^2) \cdot (4x) = 4x \cos(2x^2). \] Next, we differentiate \( f'(x) \) again to get the second derivative \( f''(x) \). Applying the product rule: \[ f''(x) = \frac{d}{dx}(4x) \cdot \cos(2x^2) + 4x \cdot \frac{d}{dx}(\cos(2x^2)). \] The second term requires the chain rule again. Simplifying gives us: \[ f''(x) = 4\cos(2x^2) - 16x^2\sin(2x^2). \] Now, let's bring some fun into it! Do you know that sine functions appear everywhere in oscillation and wave theory? From the gentle sway of a swing to the rhythms of music, sine waves encapsulate motion and sound in a harmonious dance. Next time you swing back and forth, you're witnessing the magic of sine in action! If you find yourself mixing up the rules of differentiation, don’t fret! Start by breaking down complex functions into simpler parts. Writing out the derivatives step-by-step and checking your work regularly can help prevent those sneaky mistakes. Practice makes perfect, and soon enough, you'll be differentiating with ease!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad