Responder
Here are the simplified results for each expression:
1. \( \tan^2(x) (1 - \sin^2(x)) = \sin^2(x) \)
2. \( 8 \sin^2(\theta) + 8 \cos^2(\theta) = 8 \)
3. \( (3 - 3 \sin(\theta))(3 + 3 \sin(\theta)) = 9 \cos^2(\theta) \)
4. \( \left( \frac{1}{\tan(x)} + \tan(x) \right)(\sin(x) \cdot \cos(x)) = 1 \)
5. \( \tan^2(x) - \frac{1}{\cos^2(x)} = -1 \)
Solución
Simplify the expression by following steps:
- step0: Solution:
\(8\sin^{2}\left(\theta \right)+8\cos^{2}\left(\theta \right)\)
- step1: Transform the expression:
\(8-8\cos^{2}\left(\theta \right)+8\cos^{2}\left(\theta \right)\)
- step2: Collect like terms:
\(8\)
Calculate or simplify the expression \( (3 - 3 * \sin(\theta)) * (3 + 3 * \sin(\theta)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(3-3\sin\left(\theta \right)\right)\left(3+3\sin\left(\theta \right)\right)\)
- step1: Transform the expression:
\(9-9\sin^{2}\left(\theta \right)\)
- step2: Transform the expression:
\(9-9+9\cos^{2}\left(\theta \right)\)
- step3: Remove the opposites:
\(9\cos^{2}\left(\theta \right)\)
Calculate or simplify the expression \( \tan^2(x) - 1/\cos^2(x) \).
Simplify the expression by following steps:
- step0: Solution:
\(\tan^{2}\left(x\right)-\frac{1}{\cos^{2}\left(x\right)}\)
- step1: Reduce fractions to a common denominator:
\(\frac{\tan^{2}\left(x\right)\cos^{2}\left(x\right)}{\cos^{2}\left(x\right)}-\frac{1}{\cos^{2}\left(x\right)}\)
- step2: Transform the expression:
\(\frac{\tan^{2}\left(x\right)\cos^{2}\left(x\right)-1}{\cos^{2}\left(x\right)}\)
- step3: Transform the expression:
\(\frac{\left(\tan\left(x\right)\cos\left(x\right)+1\right)\left(\tan\left(x\right)\cos\left(x\right)-1\right)}{\cos^{2}\left(x\right)}\)
- step4: Transform the expression:
\(\frac{\left(\sin\left(x\right)+1\right)\left(\sin\left(x\right)-1\right)}{\cos^{2}\left(x\right)}\)
- step5: Transform the expression:
\(\frac{-\cos^{2}\left(x\right)}{\cos^{2}\left(x\right)}\)
- step6: Rewrite the fraction:
\(-\frac{\cos^{2}\left(x\right)}{\cos^{2}\left(x\right)}\)
- step7: Reduce the fraction:
\(-1\)
Calculate or simplify the expression \( (1/\tan(x) + \tan(x)) * (\sin(x) * \cos(x)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{1}{\tan\left(x\right)}+\tan\left(x\right)\right)\left(\sin\left(x\right)\cos\left(x\right)\right)\)
- step1: Remove the parentheses:
\(\left(\frac{1}{\tan\left(x\right)}+\tan\left(x\right)\right)\sin\left(x\right)\cos\left(x\right)\)
- step2: Add the terms:
\(\frac{1+\tan^{2}\left(x\right)}{\tan\left(x\right)}\times \sin\left(x\right)\cos\left(x\right)\)
- step3: Multiply the terms:
\(\frac{\left(1+\tan^{2}\left(x\right)\right)\sin\left(x\right)\cos\left(x\right)}{\tan\left(x\right)}\)
- step4: Transform the expression:
\(\frac{\left(1+\left(\frac{\sin\left(x\right)}{\cos\left(x\right)}\right)^{2}\right)\sin\left(x\right)\cos\left(x\right)}{\tan\left(x\right)}\)
- step5: Transform the expression:
\(\frac{\left(1+\left(\frac{\sin\left(x\right)}{\cos\left(x\right)}\right)^{2}\right)\sin\left(x\right)\cos\left(x\right)}{\frac{\sin\left(x\right)}{\cos\left(x\right)}}\)
- step6: Rewrite the expression:
\(\frac{\frac{\left(\cos^{2}\left(x\right)+\sin^{2}\left(x\right)\right)\sin\left(x\right)\cos\left(x\right)}{\cos^{2}\left(x\right)}}{\frac{\sin\left(x\right)}{\cos\left(x\right)}}\)
- step7: Multiply by the reciprocal:
\(\frac{\left(\cos^{2}\left(x\right)+\sin^{2}\left(x\right)\right)\sin\left(x\right)\cos\left(x\right)}{\cos^{2}\left(x\right)}\times \frac{\cos\left(x\right)}{\sin\left(x\right)}\)
- step8: Reduce the fraction:
\(\frac{\left(\cos^{2}\left(x\right)+\sin^{2}\left(x\right)\right)\cos\left(x\right)}{\cos\left(x\right)}\times 1\)
- step9: Multiply the terms:
\(\frac{\left(\cos^{2}\left(x\right)+\sin^{2}\left(x\right)\right)\cos\left(x\right)}{\cos\left(x\right)}\)
- step10: Reduce the fraction:
\(\cos^{2}\left(x\right)+\sin^{2}\left(x\right)\)
- step11: Transform the expression:
\(1\)
Calculate or simplify the expression \( \tan^2(x) * (1 - \sin^2(x)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\tan^{2}\left(x\right)\left(1-\sin^{2}\left(x\right)\right)\)
- step1: Transform the expression:
\(\tan^{2}\left(x\right)\cos^{2}\left(x\right)\)
- step2: Multiply the terms:
\(\left(\tan\left(x\right)\cos\left(x\right)\right)^{2}\)
- step3: Transform the expression:
\(\sin^{2}\left(x\right)\)
Here are the simplified results for each expression:
1. **For** \( \tan^2(x) (1 - \sin^2(x)) \):
\[
\tan^2(x) (1 - \sin^2(x)) = \sin^2(x)
\]
2. **For** \( 8 \sin^2(\theta) + 8 \cos^2(\theta) \):
\[
8 \sin^2(\theta) + 8 \cos^2(\theta) = 8
\]
3. **For** \( (3 - 3 \sin(\theta))(3 + 3 \sin(\theta)) \):
\[
(3 - 3 \sin(\theta))(3 + 3 \sin(\theta)) = 9 \cos^2(\theta)
\]
4. **For** \( \left( \frac{1}{\tan(x)} + \tan(x) \right)(\sin(x) \cdot \cos(x)) \):
\[
\left( \frac{1}{\tan(x)} + \tan(x) \right)(\sin(x) \cdot \cos(x)) = 1
\]
5. **For** \( \tan^2(x) - \frac{1}{\cos^2(x)} \):
\[
\tan^2(x) - \frac{1}{\cos^2(x)} = -1
\]
These results summarize the simplifications of the given expressions.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución