Pregunta
upstudy study bank question image url

\( \left. \begin{array} { l } { \tan ^ { 2 } x ( 1 - \sin ^ { 2 } x ) } \\ { 8 \sin ^ { 2 } \theta + 8 \cos ^ { 2 } \theta } \\ { ( 3 - 3 \sin \theta ) ( 3 + 3 \sin \theta ) } \\ { ( \frac { 1 } { \tan x } + \tan x ) ( \sin x \cdot \cos x ) } \\ { \tan ^ { 2 } x - \frac { 1 } { \cos ^ { 2 } x } } \\ \hline \end{array} \right. \)

Ask by Burns Ayala. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the simplified results for each expression: 1. \( \tan^2(x) (1 - \sin^2(x)) = \sin^2(x) \) 2. \( 8 \sin^2(\theta) + 8 \cos^2(\theta) = 8 \) 3. \( (3 - 3 \sin(\theta))(3 + 3 \sin(\theta)) = 9 \cos^2(\theta) \) 4. \( \left( \frac{1}{\tan(x)} + \tan(x) \right)(\sin(x) \cdot \cos(x)) = 1 \) 5. \( \tan^2(x) - \frac{1}{\cos^2(x)} = -1 \)

Solución

Simplify the expression by following steps: - step0: Solution: \(8\sin^{2}\left(\theta \right)+8\cos^{2}\left(\theta \right)\) - step1: Transform the expression: \(8-8\cos^{2}\left(\theta \right)+8\cos^{2}\left(\theta \right)\) - step2: Collect like terms: \(8\) Calculate or simplify the expression \( (3 - 3 * \sin(\theta)) * (3 + 3 * \sin(\theta)) \). Simplify the expression by following steps: - step0: Solution: \(\left(3-3\sin\left(\theta \right)\right)\left(3+3\sin\left(\theta \right)\right)\) - step1: Transform the expression: \(9-9\sin^{2}\left(\theta \right)\) - step2: Transform the expression: \(9-9+9\cos^{2}\left(\theta \right)\) - step3: Remove the opposites: \(9\cos^{2}\left(\theta \right)\) Calculate or simplify the expression \( \tan^2(x) - 1/\cos^2(x) \). Simplify the expression by following steps: - step0: Solution: \(\tan^{2}\left(x\right)-\frac{1}{\cos^{2}\left(x\right)}\) - step1: Reduce fractions to a common denominator: \(\frac{\tan^{2}\left(x\right)\cos^{2}\left(x\right)}{\cos^{2}\left(x\right)}-\frac{1}{\cos^{2}\left(x\right)}\) - step2: Transform the expression: \(\frac{\tan^{2}\left(x\right)\cos^{2}\left(x\right)-1}{\cos^{2}\left(x\right)}\) - step3: Transform the expression: \(\frac{\left(\tan\left(x\right)\cos\left(x\right)+1\right)\left(\tan\left(x\right)\cos\left(x\right)-1\right)}{\cos^{2}\left(x\right)}\) - step4: Transform the expression: \(\frac{\left(\sin\left(x\right)+1\right)\left(\sin\left(x\right)-1\right)}{\cos^{2}\left(x\right)}\) - step5: Transform the expression: \(\frac{-\cos^{2}\left(x\right)}{\cos^{2}\left(x\right)}\) - step6: Rewrite the fraction: \(-\frac{\cos^{2}\left(x\right)}{\cos^{2}\left(x\right)}\) - step7: Reduce the fraction: \(-1\) Calculate or simplify the expression \( (1/\tan(x) + \tan(x)) * (\sin(x) * \cos(x)) \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{1}{\tan\left(x\right)}+\tan\left(x\right)\right)\left(\sin\left(x\right)\cos\left(x\right)\right)\) - step1: Remove the parentheses: \(\left(\frac{1}{\tan\left(x\right)}+\tan\left(x\right)\right)\sin\left(x\right)\cos\left(x\right)\) - step2: Add the terms: \(\frac{1+\tan^{2}\left(x\right)}{\tan\left(x\right)}\times \sin\left(x\right)\cos\left(x\right)\) - step3: Multiply the terms: \(\frac{\left(1+\tan^{2}\left(x\right)\right)\sin\left(x\right)\cos\left(x\right)}{\tan\left(x\right)}\) - step4: Transform the expression: \(\frac{\left(1+\left(\frac{\sin\left(x\right)}{\cos\left(x\right)}\right)^{2}\right)\sin\left(x\right)\cos\left(x\right)}{\tan\left(x\right)}\) - step5: Transform the expression: \(\frac{\left(1+\left(\frac{\sin\left(x\right)}{\cos\left(x\right)}\right)^{2}\right)\sin\left(x\right)\cos\left(x\right)}{\frac{\sin\left(x\right)}{\cos\left(x\right)}}\) - step6: Rewrite the expression: \(\frac{\frac{\left(\cos^{2}\left(x\right)+\sin^{2}\left(x\right)\right)\sin\left(x\right)\cos\left(x\right)}{\cos^{2}\left(x\right)}}{\frac{\sin\left(x\right)}{\cos\left(x\right)}}\) - step7: Multiply by the reciprocal: \(\frac{\left(\cos^{2}\left(x\right)+\sin^{2}\left(x\right)\right)\sin\left(x\right)\cos\left(x\right)}{\cos^{2}\left(x\right)}\times \frac{\cos\left(x\right)}{\sin\left(x\right)}\) - step8: Reduce the fraction: \(\frac{\left(\cos^{2}\left(x\right)+\sin^{2}\left(x\right)\right)\cos\left(x\right)}{\cos\left(x\right)}\times 1\) - step9: Multiply the terms: \(\frac{\left(\cos^{2}\left(x\right)+\sin^{2}\left(x\right)\right)\cos\left(x\right)}{\cos\left(x\right)}\) - step10: Reduce the fraction: \(\cos^{2}\left(x\right)+\sin^{2}\left(x\right)\) - step11: Transform the expression: \(1\) Calculate or simplify the expression \( \tan^2(x) * (1 - \sin^2(x)) \). Simplify the expression by following steps: - step0: Solution: \(\tan^{2}\left(x\right)\left(1-\sin^{2}\left(x\right)\right)\) - step1: Transform the expression: \(\tan^{2}\left(x\right)\cos^{2}\left(x\right)\) - step2: Multiply the terms: \(\left(\tan\left(x\right)\cos\left(x\right)\right)^{2}\) - step3: Transform the expression: \(\sin^{2}\left(x\right)\) Here are the simplified results for each expression: 1. **For** \( \tan^2(x) (1 - \sin^2(x)) \): \[ \tan^2(x) (1 - \sin^2(x)) = \sin^2(x) \] 2. **For** \( 8 \sin^2(\theta) + 8 \cos^2(\theta) \): \[ 8 \sin^2(\theta) + 8 \cos^2(\theta) = 8 \] 3. **For** \( (3 - 3 \sin(\theta))(3 + 3 \sin(\theta)) \): \[ (3 - 3 \sin(\theta))(3 + 3 \sin(\theta)) = 9 \cos^2(\theta) \] 4. **For** \( \left( \frac{1}{\tan(x)} + \tan(x) \right)(\sin(x) \cdot \cos(x)) \): \[ \left( \frac{1}{\tan(x)} + \tan(x) \right)(\sin(x) \cdot \cos(x)) = 1 \] 5. **For** \( \tan^2(x) - \frac{1}{\cos^2(x)} \): \[ \tan^2(x) - \frac{1}{\cos^2(x)} = -1 \] These results summarize the simplifications of the given expressions.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

The tangent function's relationship with sine and cosine dates back to ancient times when trigonometry was being developed to solve practical problems in astronomy and land measurement. Early mathematicians, like the Greeks and Islamic scholars, used these functions extensively, leading to the identities we now use. The significance of \( \tan x \) emerges in many mathematical scenarios, such as analyzing wave patterns or constructing triangles. When it comes to practical applications, understanding how to manipulate these trigonometric identities is crucial in fields such as engineering and physics. For instance, they can help in wave analysis where different frequencies and amplitudes are involved, guiding designs in architecture or even technology. Learning to simplify these expressions can streamline calculations and allow for clearer understanding and stronger predictions in modeling real-world phenomena!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad