(1)) A line with a slope of \( \frac{1}{9} \) passes through the points \( (r,-4) \) and \( (-2,-5) \). What is th value of \( r \) ? \( r=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the value of \( r \), we use the slope formula, which calculates the slope between two points \((x_1, y_1)\) and \((x_2, y_2)\) as follows: \[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \] In this case, we know that the slope is \( \frac{1}{9} \), and our points are \((r, -4)\) and \((-2, -5)\). We can substitute into the formula: \[ \frac{-5 - (-4)}{-2 - r} = \frac{1}{9} \] This simplifies to: \[ \frac{-1}{-2 - r} = \frac{1}{9} \] Cross-multiplying gives: \[ -1 \cdot 9 = 1 \cdot (-2 - r) \] Thus, \[ -9 = -2 - r \] Solving for \( r \), we get: \[ -9 + 2 = -r \] \[ -7 = -r \] \[ r = 7 \] Thus, \( r = 7 \).
