Pregunta
If \( f(x)=9^{x} \), what is \( f^{-1}(x) ? \) \( f^{-1}(x)=\square \)
Ask by Hodgson Johnston. in the United States
Dec 07,2024
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( f^{-1}(x) = \frac{\ln(x)}{\ln(9)} \)
Solución
To find the inverse function \( f^{-1}(x) \) of the function \( f(x) = 9^x \), we start by setting \( y = f(x) \):
\[
y = 9^x
\]
Next, we want to solve for \( x \) in terms of \( y \). To do this, we can take the logarithm of both sides. We can use the natural logarithm (or any logarithm), but for simplicity, let's use the base 9 logarithm:
\[
\log_9(y) = x
\]
Now, we can express \( x \) in terms of \( y \):
\[
x = \log_9(y)
\]
Since we are looking for the inverse function \( f^{-1}(x) \), we replace \( y \) with \( x \):
\[
f^{-1}(x) = \log_9(x)
\]
To express \( \log_9(x) \) in terms of natural logarithms, we can use the change of base formula:
\[
\log_9(x) = \frac{\ln(x)}{\ln(9)}
\]
Thus, the inverse function is:
\[
f^{-1}(x) = \frac{\ln(x)}{\ln(9)}
\]
So, the final answer is:
\[
f^{-1}(x) = \frac{\ln(x)}{\ln(9)}
\]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To find the inverse function of \( f(x) = 9^{x} \), we start by replacing \( f(x) \) with \( y \): 1. Set \( y = 9^{x} \). 2. To solve for \( x \), take the logarithm of both sides: \( \log(y) = \log(9^{x}) \). 3. Using the power rule of logarithms, this simplifies to \( \log(y) = x \cdot \log(9) \). 4. Now solve for \( x \): \( x = \frac{\log(y)}{\log(9)} \). Lastly, replacing \( y \) back with \( x \) gives the inverse function: \[ f^{-1}(x) = \frac{\log(x)}{\log(9)} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium