MULTIPLE-CHOICE QUEST What is the \( \cos \) A? ecant (sec), cosecant (csc) and cotangent (cot) example I Trigonometry I Khan Academy tan Academy \( \operatorname{sic} A=\frac{9 p p}{n y p}=\frac{12}{13} \) \( \frac{5}{13} \) \( \frac{12}{13} \) \( \frac{13}{12} \) \( \frac{13}{5} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find \( \cos A \), we can use the relationship that involves the sine function. Knowing that \( \sin A = \frac{12}{13} \), we can apply the Pythagorean identity, where \( \sin^2 A + \cos^2 A = 1 \). Hence, \( \cos^2 A = 1 - \left(\frac{12}{13}\right)^2 = \frac{1}{169} \), which results in \( \cos A = \frac{5}{13} \). Additionally, in a right triangle, the sine function represents the ratio of the length of the opposite side to the hypotenuse, while cosine represents the adjacent side to the hypotenuse. In this scenario, knowing \( \sin A \) allows you to easily derive \( \cos A \) and understand the triangle with sides related to those ratios.
