\( \cos \theta \frac{5}{13} \) and \( \sin \theta<0 \) Use a sketch to determine a) \( \sin \theta \) b) \( \sec \theta+\tan ^{2} \theta+1 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
In the given scenario, you have \( \cos \theta = \frac{5}{13} \) and \( \sin \theta < 0 \), which places \(\theta\) in the fourth quadrant. To find \(\sin \theta\), you can use the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting the known value, \[ \sin^2 \theta + \left(\frac{5}{13}\right)^2 = 1 \\ \sin^2 \theta + \frac{25}{169} = 1 \\ \sin^2 \theta = 1 - \frac{25}{169} \\ \sin^2 \theta = \frac{169 - 25}{169} = \frac{144}{169} \] Taking the square root (keeping in mind \(\sin \theta < 0\)): \[ \sin \theta = -\frac{12}{13} \] For part (b), we need to compute \( \sec \theta + \tan^2 \theta + 1 \). We find \(\sec \theta\) and \(\tan \theta\) using: \[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{5}{13}} = \frac{13}{5} \] Now to find \(\tan \theta\): \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{-\frac{12}{13}}{\frac{5}{13}} = -\frac{12}{5} \] Now calculate \(\tan^2 \theta\): \[ \tan^2 \theta = \left(-\frac{12}{5}\right)^2 = \frac{144}{25} \] Substituting \(\sec \theta\) and \(\tan^2 \theta\) into the expression: \[ \sec \theta + \tan^2 \theta + 1 = \frac{13}{5} + \frac{144}{25} + 1 \] Converting \(\frac{13}{5}\) into a fraction with a denominator of 25: \[ \frac{13}{5} = \frac{65}{25} \] Thus, \[ \sec \theta + \tan^2 \theta + 1 = \frac{65}{25} + \frac{144}{25} + \frac{25}{25} = \frac{65 + 144 + 25}{25} = \frac{234}{25} \] Putting it all together, we find: a) \( \sin \theta = -\frac{12}{13} \) b) \( \sec \theta + \tan^2 \theta + 1 = \frac{234}{25} \)
