Pregunta
upstudy study bank question image url

One leg of an isosceles triangle is \( 2 x+5 \) and the other is \( 3 x-2 \). What is the base length? 9.5 7 Cannot be determined 19

Ask by Ward Gardner. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Cannot be determined

Solución

To find the base length of the isosceles triangle, we first need to set the two legs equal to each other since they are the same in an isosceles triangle. The legs of the triangle are given as: - Leg 1: \( 2x + 5 \) - Leg 2: \( 3x - 2 \) We can set up the equation: \[ 2x + 5 = 3x - 2 \] Now, let's solve for \( x \) step by step. 1. Subtract \( 2x \) from both sides: \[ 5 = x - 2 \] 2. Add \( 2 \) to both sides: \[ 7 = x \] Now that we have \( x = 7 \), we can substitute this value back into either expression for the legs to find their lengths. Let's calculate the length of the legs: For Leg 1: \[ 2x + 5 = 2(7) + 5 = 14 + 5 = 19 \] For Leg 2: \[ 3x - 2 = 3(7) - 2 = 21 - 2 = 19 \] Both legs are equal to \( 19 \). Since we have an isosceles triangle, the base length can be determined using the properties of triangles. However, the problem does not provide any information about the base length directly. Given the options: - 9.5 - 7 - Cannot be determined - 19 Since we cannot determine the base length from the information provided, the correct answer is: **Cannot be determined**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the base length, we first need to set the two equal legs of the isosceles triangle equal to each other since they are the same length. Therefore, we have the equation \( 2x + 5 = 3x - 2 \). Solving for \( x \), we rearrange the equation: \[ 5 + 2 = 3x - 2x \] \[ 7 = x \] Now, substituting \( x = 7 \) back into one of the leg expressions, we find the lengths of the legs. Using \( 2x + 5 \): \[ 2(7) + 5 = 14 + 5 = 19 \] The legs measure 19 each. Since the triangle is isosceles, we don't need to know the height or other angles; thus, the specific base length cannot be directly determined given the current information. Therefore, the correct answer is: **Cannot be determined**.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad