Pregunta
upstudy study bank question image url

A town has a population of 7000 and grows at \( 4 \% \) every year. What will be the population after 13 years, to the nearest whole number?

Ask by Barnett King. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The population after 13 years will be approximately 11,656.

Solución

To find the population after 13 years, we can use the formula for exponential growth: \[ P(t) = P_0 \times (1 + r)^t \] where: - \( P(t) \) is the population after \( t \) years, - \( P_0 \) is the initial population, - \( r \) is the annual growth rate, - \( t \) is the number of years. Given: - Initial population \( P_0 = 7000 \), - Annual growth rate \( r = 4\% = 0.04 \), - Number of years \( t = 13 \). Substitute the given values into the formula: \[ P(13) = 7000 \times (1 + 0.04)^{13} \] Now, we can calculate the population after 13 years using the formula. Calculate the value by following steps: - step0: Calculate: \(7000\left(1+0.04\right)^{13}\) - step1: Add the numbers: \(7000\times 1.04^{13}\) - step2: Convert the expressions: \(7000\left(\frac{26}{25}\right)^{13}\) - step3: Simplify: \(7000\times \frac{26^{13}}{25^{13}}\) - step4: Rewrite the expression: \(125\times 56\times \frac{26^{13}}{25^{13}}\) - step5: Rewrite the expression: \(5^{3}\times 56\times \frac{26^{13}}{5^{26}}\) - step6: Reduce the numbers: \(56\times \frac{26^{13}}{5^{23}}\) - step7: Multiply: \(\frac{56\times 26^{13}}{5^{23}}\) The population after 13 years will be approximately 11655.514551. Rounding this to the nearest whole number, the population after 13 years will be approximately 11656.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To calculate the population after 13 years with an initial population of 7000 growing at 4% per year, you can use the formula for exponential growth: \[ P = P_0(1 + r)^t \] where \( P_0 \) is the initial population, \( r \) is the growth rate (0.04), and \( t \) is the time in years (13). Using this formula: \[ P = 7000(1 + 0.04)^{13} \] Calculating it step by step gives: \[ P = 7000(1.04)^{13} \] \[ P \approx 7000 \times 1.6007 \approx 11205 \] So, the population after 13 years, rounded to the nearest whole number, is about 11,205. Now let's see how this situation unfolds in real-life scenarios and what common mistakes might occur when performing such calculations: Growing populations can put a strain on local resources and infrastructure, leading towns to plan for additional services such as schools, roads, and healthcare. Ensuring that growth is sustainable while maintaining a high quality of life can be a challenge for town planners, making accurate projections vital for future developments and budgeting. When calculating population growth, a common mistake is forgetting to convert percentage rates into decimal form (e.g., using 4 as opposed to 0.04). Additionally, some might misapply the formula by not recognizing it as exponential growth, resulting in incorrect linear projections instead. Always double-check the formula and your rate conversion!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad