Pregunta
upstudy study bank question image url

Given points \( A(-2,0), B(-5,3), C(-9,-1), P(7,6), Q(4,0) \), and \( R(-4,4) \) , which of the following proves that \( \triangle A B C \sim \triangle P Q R \) ? By the Distance Formula, \( A B=18, B C=32 \), and \( C A=50 \). Also, \( P Q=45, Q R=90 \), and \( R P=125 \). Therefore, \( \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P}=\frac{2}{5} \), and therefore, \( \triangle A B C \sim \triangle P Q R \) by SAS \( \sim \). By the Distance Formula, \( A B=3 \sqrt{2}, B C=4 \sqrt{2} \), and \( C A=5 \sqrt{2} \). Also, \( P Q=3 \sqrt{5} Q R=4 \sqrt{5} \), and \( R P=5 \sqrt{5} \). Therefore, \( \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P}=\frac{\sqrt{2}}{\sqrt{5}}=\frac{\sqrt{10}}{5} \), and therefore, \( \triangle A B C \sim \triangle P Q R \) by SSS \( \sim \). By the Distance Formula, \( A B=3 \sqrt{2}, B C=4 \sqrt{2} \), and \( C A=5 \sqrt{2} \). Also, \( P Q=3 \sqrt{5}, Q R=4 \sqrt{5} \), and \( R P=5 \sqrt{5} \). Therefore, \( \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P}=\frac{\sqrt{2}}{\sqrt{5}}=\frac{\sqrt{10}}{5} \), and therefore, \( \triangle A B C \sim \triangle P Q R \) by SAS \( \sim \). By the Distance Formula, \( A B=50, B C=32 \), and \( C A=18 \). Also, \( P Q=125, Q R=90 \), and \( R P=45 \). Therefore, \( \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P}=\frac{2}{5} \), and therefore, \( \triangle A B C \sim \triangle P Q R \) by SSS \( \sim \).

Ask by Simpson Lawson. in the United States
Jan 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The second option is correct because all corresponding sides of triangles ABC and PQR are proportional, satisfying the SSS similarity criterion.

Solución

The correct option that proves \( \triangle ABC \sim \triangle PQR \) is the **second option**. Here's why: ### **Second Option Explained:** 1. **Calculating Side Lengths Using the Distance Formula:** - For \( \triangle ABC \): - \( AB = \sqrt{(-5 - (-2))^2 + (3 - 0)^2} = \sqrt{3^2 + 3^2} = 3\sqrt{2} \) - \( BC = \sqrt{(-9 - (-5))^2 + (-1 - 3)^2} = \sqrt{4^2 + (-4)^2} = 4\sqrt{2} \) - \( CA = \sqrt{(-2 - (-9))^2 + (0 - (-1))^2} = \sqrt{7^2 + 1^2} = 5\sqrt{2} \) - For \( \triangle PQR \): - \( PQ = \sqrt{(4 - 7)^2 + (0 - 6)^2} = \sqrt{(-3)^2 + (-6)^2} = 3\sqrt{5} \) - \( QR = \sqrt{(-4 - 4)^2 + (4 - 0)^2} = \sqrt{(-8)^2 + 4^2} = 4\sqrt{5} \) - \( RP = \sqrt{(7 - (-4))^2 + (6 - 4)^2} = \sqrt{11^2 + 2^2} = 5\sqrt{5} \) 2. **Comparing the Ratios of Corresponding Sides:** - \( \frac{AB}{PQ} = \frac{3\sqrt{2}}{3\sqrt{5}} = \frac{\sqrt{2}}{\sqrt{5}} = \frac{\sqrt{10}}{5} \) - \( \frac{BC}{QR} = \frac{4\sqrt{2}}{4\sqrt{5}} = \frac{\sqrt{2}}{\sqrt{5}} = \frac{\sqrt{10}}{5} \) - \( \frac{CA}{RP} = \frac{5\sqrt{2}}{5\sqrt{5}} = \frac{\sqrt{2}}{\sqrt{5}} = \frac{\sqrt{10}}{5} \) All corresponding sides have the **same ratio**, which is \( \frac{\sqrt{10}}{5} \). 3. **Conclusion:** Since all corresponding sides of \( \triangle ABC \) and \( \triangle PQR \) are proportional, by the **Side-Side-Side (SSS) Similarity Criterion**, the triangles are similar. ### **Other Options:** - **First and Fourth Options:** These incorrectly calculate the side lengths and their ratios, leading to inconsistent ratios that do not support similarity. - **Third Option:** While it correctly calculates the side lengths and ratios, it incorrectly applies the **Side-Angle-Side (SAS) Similarity Criterion** instead of **SSS**. ### **Final Answer:** **By calculating all side ratios equal and applying SSS similarity, the second option is correct.**

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the similarity of triangles not only applies to comparing sizes but also extends to many aspects of art and architecture? For instance, the concept of similar triangles is crucial in creating perspective in artwork, where distant objects appear smaller and closer to the viewer. This manipulation of proportions can lead to stunning visual effects, showcasing the beauty of geometry beyond just the classroom! Now, if you're delving into similarity proofs, it’s essential to remember the different conditions that confirm triangles are similar: SSS (Side-Side-Side), SAS (Side-Angle-Side), and AA (Angle-Angle). A common mistake is mistakenly using the ratios of sides without checking if the angles are indeed congruent or if the ratios are consistent. Watch out for these details to avoid mix-ups and ensure you have a spot-on similarity proof!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad