Pregunta
upstudy study bank question image url

Simplify the following complex rational expression. \[ \frac{-\frac{6}{x+4}+\frac{2}{x-5}}{-\frac{3}{x+4}} \]

Ask by Bush Allan. in the United States
Jan 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The simplified form of the expression is \(\frac{4x - 38}{3(x - 5)}\).

Solución

To simplify the complex rational expression: \[ \frac{-\frac{6}{x+4} + \frac{2}{x-5}}{-\frac{3}{x+4}} \] **Step 1: Simplify the Numerator** Combine the terms in the numerator: \[ -\frac{6}{x+4} + \frac{2}{x-5} = \frac{-6(x-5) + 2(x+4)}{(x+4)(x-5)} \] Expand and combine like terms: \[ \frac{-6x + 30 + 2x + 8}{(x+4)(x-5)} = \frac{-4x + 38}{(x+4)(x-5)} \] **Step 2: Form the Complete Fraction** Now, the expression becomes: \[ \frac{\frac{-4x + 38}{(x+4)(x-5)}}{\frac{-3}{x+4}} \] **Step 3: Divide by a Fraction (Multiply by its Reciprocal)** \[ \frac{-4x + 38}{(x+4)(x-5)} \div \frac{-3}{x+4} = \frac{-4x + 38}{(x+4)(x-5)} \times \frac{x+4}{-3} \] **Step 4: Simplify by Canceling Common Factors** Cancel out the \((x+4)\) terms: \[ \frac{-4x + 38}{x-5} \times \frac{1}{-3} = \frac{(-4x + 38)(-1)}{3(x-5)} = \frac{4x - 38}{3(x-5)} \] **Final Simplified Expression:** \[ \frac{4x - 38}{3(x - 5)} \] **Alternatively, factoring the numerator:** \[ \frac{2(2x - 19)}{3(x - 5)} \] Either form is correct, but the simplified form without factoring is often preferred. **Answer:** After simplifying, the expression is (4 x – 38) divided by [3 (x – 5)]. Thus, (4x−38)/(3(x−5))

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To simplify the complex rational expression \[ \frac{-\frac{6}{x+4}+\frac{2}{x-5}}{-\frac{3}{x+4}}, \] we start by addressing the numerator and the denominator separately. **Step 1: Simplify the numerator.** The numerator is \[ -\frac{6}{x+4} + \frac{2}{x-5}. \] To combine these fractions, we need a common denominator, which is \((x + 4)(x - 5)\): \[ -\frac{6(x - 5)}{(x + 4)(x - 5)} + \frac{2(x + 4)}{(x + 4)(x - 5)}. \] Expanding each fraction: - The first term becomes: \[ -\frac{6x - 30}{(x + 4)(x - 5)} = \frac{-6x + 30}{(x + 4)(x - 5)}. \] - The second term becomes: \[ \frac{2x + 8}{(x + 4)(x - 5)}. \] Combining the two terms in the numerator: \[ \frac{-6x + 30 + 2x + 8}{(x + 4)(x - 5)} = \frac{-4x + 38}{(x + 4)(x - 5)}. \] Thus, the numerator simplifies to: \[ \frac{-4x + 38}{(x + 4)(x - 5)}. \] **Step 2: Simplify the denominator.** The denominator is \[ -\frac{3}{x + 4}. \] Now we can rewrite the complex fraction: \[ \frac{\frac{-4x + 38}{(x + 4)(x - 5)}}{-\frac{3}{x + 4}}. \] **Step 3: Simplify the complex fraction.** When dividing fractions, we multiply by the reciprocal: \[ \frac{-4x + 38}{(x + 4)(x - 5)} \cdot \frac{x + 4}{-3}. \] The \( (x + 4) \) in the numerator and denominator cancels out: \[ \frac{-4x + 38}{-3(x - 5)}. \] The negative signs can also be canceled, leading us to: \[ \frac{4x - 38}{3(x - 5)}. \] **Step 4: Factor out a common factor in the numerator.** Factoring out a 2 from the numerator gives: \[ \frac{2(2x - 19)}{3(x - 5)}. \] Thus, the simplified result for the complex rational expression is \[ \frac{2(2x - 19)}{3(x - 5)}. \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad