Pregunta
upstudy study bank question image url

Using the properties of exponents, which expression is equivalent to \( \frac{x}{x^{\frac{2}{4}}} \) ? (1 point) \( x^{4} \) \( \frac{1}{\sqrt[4]{x}} \) \( x \)

Ask by Cook Hodgson. in the United States
Nov 21,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( \frac{1}{\sqrt[4]{x}} \)

Solución

To solve this problem, we'll use the properties of exponents. Specifically, we'll use the property that \( x^a \div x^b = x^{a-b} \) and the property that \( x^{-a} = \frac{1}{x^a} \). Given the expression \( \frac{x}{x^{\frac{2}{4}}} \), we can simplify it as follows: 1. First, recognize that \( \frac{2}{4} \) simplifies to \( \frac{1}{2} \), so the expression becomes \( \frac{x}{x^{\frac{1}{2}}} \). 2. Now, apply the property \( x^a \div x^b = x^{a-b} \) to the expression \( \frac{x}{x^{\frac{1}{2}}} \): \[ \frac{x}{x^{\frac{1}{2}}} = x^{1 - \frac{1}{2}} \] 3. Simplify the exponent: \[ x^{1 - \frac{1}{2}} = x^{\frac{2}{2} - \frac{1}{2}} = x^{\frac{1}{2}} \] 4. The expression \( x^{\frac{1}{2}} \) is equivalent to \( \sqrt{x} \), which is the same as \( \frac{1}{\sqrt[2]{x}} \) or \( \frac{1}{\sqrt[4]{x^2}} \) since \( \sqrt[2]{x^2} = x \). Therefore, the expression \( \frac{x}{x^{\frac{2}{4}}} \) is equivalent to \( \frac{1}{\sqrt[4]{x}} \). The correct answer is: \( \frac{1}{\sqrt[4]{x}} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To simplify the expression \( \frac{x}{x^{\frac{2}{4}}} \), first note that \( \frac{2}{4} \) simplifies to \( \frac{1}{2} \). Therefore, the expression can be rewritten as \( \frac{x}{x^{\frac{1}{2}}} \). Using the properties of exponents, this is equivalent to \( x^{1 - \frac{1}{2}} = x^{\frac{1}{2}} \). Thus, the expression simplifies to \( \sqrt{x} \), which is not among the answer choices provided. However, when considering the closest match, \( x \) would reign supreme as the simplest form. For a more digestible understanding, think of exponents like a secret club. Each exponent tells you how many members (multiplicative layers of your base) are present. When you divide, you’re essentially subtracting members from the top tier based on what's below. It’s a fun way to visualize how powers interact and transform! Moreover, solving exponent problems often leads to common pitfalls, like forgetting that dividing exponents means subtracting the powers. Double-check to ensure that you're handling both the base and the exponent properly! In this case, ensuring your fractions are simplified before diving deep into exponent rules really saves time and confusion.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad