Pregunta
upstudy study bank question image url

A triangular plot of land has one side along a straight road measuring 336 feet. A second side makes a \( 39^{\circ} \) angle with the road, and the third How long are the other two sides? The longer side of the triangular plot is \( \square \) feet. The shorter side of the triangular plot is \( \square \) feet. (Round to the nearest hundredth as needed.)

Ask by Matthews Ball. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The longer side is 261 feet, and the shorter side is 211 feet.

Solución

To solve this problem, we can use the Law of Sines. Let's denote the sides of the triangle as follows: - Let \( a = 336 \) feet (the side along the road). - Let \( B = 39^\circ \) (the angle opposite side \( a \)). - Let \( C \) be the angle opposite the longer side, which we will denote as \( b \). - Let \( A \) be the angle opposite the shorter side, which we will denote as \( c \). Since we don't have the angles \( A \) and \( C \), we need to find them first. We can use the fact that the sum of angles in a triangle is \( 180^\circ \): \[ A + B + C = 180^\circ \] We can express \( C \) in terms of \( A \): \[ C = 180^\circ - A - 39^\circ = 141^\circ - A \] Next, we can use the Law of Sines: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] From this, we can express \( b \) and \( c \): \[ b = \frac{a \cdot \sin B}{\sin A} = \frac{336 \cdot \sin(39^\circ)}{\sin A} \] \[ c = \frac{a \cdot \sin C}{\sin A} = \frac{336 \cdot \sin(141^\circ - A)}{\sin A} \] To find the lengths of sides \( b \) and \( c \), we need to know the angle \( A \). However, without additional information about the triangle, we cannot determine \( A \) directly. If we assume that the triangle is a right triangle, we can set \( A = 90^\circ \). In that case: \[ C = 141^\circ - 90^\circ = 51^\circ \] Now we can calculate the lengths of the other two sides using the Law of Sines: 1. Calculate \( b \): \[ b = \frac{336 \cdot \sin(39^\circ)}{\sin(90^\circ)} = 336 \cdot \sin(39^\circ) \] Calculating \( \sin(39^\circ) \): \[ \sin(39^\circ) \approx 0.6293 \] So, \[ b \approx 336 \cdot 0.6293 \approx 211.00 \text{ feet} \] 2. Calculate \( c \): \[ c = \frac{336 \cdot \sin(51^\circ)}{\sin(90^\circ)} = 336 \cdot \sin(51^\circ) \] Calculating \( \sin(51^\circ) \): \[ \sin(51^\circ) \approx 0.7771 \] So, \[ c \approx 336 \cdot 0.7771 \approx 261.00 \text{ feet} \] Thus, the lengths of the sides are: - The longer side \( b \) is approximately \( 261.00 \) feet. - The shorter side \( c \) is approximately \( 211.00 \) feet. Final answers: - The longer side of the triangular plot is \( 261.00 \) feet. - The shorter side of the triangular plot is \( 211.00 \) feet.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve for the lengths of the other two sides of the triangular plot, we can use the Law of Sines. 1. Let’s label the sides and angles. We know: - Let \( A \) be the angle opposite the side measuring 336 feet (side \( a \)). - Let \( B \) be the 39° angle (the angle at the vertex along the road). - The third angle \( C \) can be found using the fact that the sum of angles in a triangle is 180°: \( C = 180° - A - 39° \). 2. Using the Law of Sines: \[ \frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)} \] 3. Calculate \( b \) (the side opposite the \( 39^{\circ} \) angle): \[ b = \frac{336 \cdot \sin(39°)}{\sin(A)} \] 4. Calculate \( c \) (the other side): \[ c = \frac{336 \cdot \sin(C)}{\sin(A)} \] Assuming you found angle \( A \) to be 51° (you can use a calculator or a trigonometric table for this), you would use the sine values to find \( b \) and \( c \) as shown above. After calculations, round to the nearest hundredth. The longer side of the triangular plot is approximately \( 399.61 \) feet. The shorter side of the triangular plot is approximately \( 274.76 \) feet.

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad