Pregunta
upstudy study bank question image url

5. Solve the inequality \( |x-5|-|x-3| \geq 0 \) and represent the solution on the number line.

Ask by Kelley Luna. in Nigeria
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The inequality \( |x - 5| - |x - 3| \geq 0 \) holds true for all \( x \) less than or equal to 4. On the number line, this is represented by shading from negative infinity up to and including 4.

Solución

We need to solve the inequality   |x – 5| – |x – 3| ≥ 0. A good strategy is to break the number line into regions where the expressions inside the absolute values change sign. The critical values are x = 3 and x = 5. Step 1. Consider three cases: Case 1: x < 3   Here, both x – 5 and x – 3 are negative.   So, |x – 5| = 5 – x and |x – 3| = 3 – x.   Then the inequality becomes    (5 – x) – (3 – x) = 5 – x – 3 + x = 2.   Since 2 ≥ 0, the inequality holds for every x in (–∞, 3). Case 2: 3 ≤ x < 5   Now, x – 3 is nonnegative and x – 5 is negative.   So, |x – 3| = x – 3 and |x – 5| = 5 – x.   The inequality becomes:    (5 – x) – (x – 3) = 5 – x – x + 3 = 8 – 2x.   We require:    8 – 2x ≥ 0  ⟹ 8 ≥ 2x  ⟹ x ≤ 4.   Thus, in this case, the inequality holds for x between 3 and 4 (inclusive of 3 and 4). Case 3: x ≥ 5   Now, both x – 5 and x – 3 are nonnegative.   So, |x – 5| = x – 5 and |x – 3| = x – 3.   Then the inequality becomes:    (x – 5) – (x – 3) = x – 5 – x + 3 = –2.   Since –2 is not ≥ 0, the inequality fails for x ≥ 5. Step 2. Combine the results from all cases:   For x < 3, the inequality always holds.   For 3 ≤ x ≤ 4, the inequality holds.   For x > 4, the inequality fails. Thus, the solution set is:   x ∈ (–∞, 4]. Step 3. Representing the solution on the number line:   • Draw a horizontal line for the number line.   • Shade the entire line from –∞ up to 4.   • Place a closed (filled) circle at x = 4 to indicate that 4 is included.   • Do not shade any portion of the line for x > 4. Final Answer: The inequality |x – 5| – |x – 3| ≥ 0 is satisfied for all x in (–∞, 4].

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the inequality \( |x-5|-|x-3| \geq 0 \), we first need to consider the critical points where the expressions inside the absolute values change, which are at \( x = 3 \) and \( x = 5 \). This will divide the number line into three intervals: \( (-\infty, 3) \), \( [3, 5) \), and \( [5, \infty) \). 1. For the interval \( (-\infty, 3) \): Both \( |x-5| \) and \( |x-3| \) become negative. Therefore, the inequality transforms to \( -(x-5) - (-(x-3)) \geq 0 \), or \( -x + 5 + x - 3 \geq 0 \) simplifies to \( 2 \geq 0 \), which is always true. Thus, the solution in this interval is \( (-\infty, 3) \). 2. For the interval \( [3, 5) \): Here, \( |x-5| \) remains negative and \( |x-3| \) becomes positive. This gives us \( -(x-5) - (x-3) \geq 0 \) or \( -x + 5 - x + 3 \geq 0 \), resulting in \( 8 - 2x \geq 0 \) or \( x \leq 4 \). Therefore, the solution in this interval is \( [3, 4] \). 3. For the interval \( [5, \infty) \): Both absolute values are positive, so we have \( (x-5) - (x-3) \geq 0 \), which simplifies to \( -2 \geq 0 \). This is false, meaning there are no solutions here. Combining our solution sets, we find that the overall solution to the inequality \( |x-5|-|x-3| \geq 0 \) is \( (-\infty, 3) \cup [3, 4] \). To represent this on a number line, you would shade the entire region from negative infinity to 3 and include a closed interval from 3 to 4, indicating: - Open circle at 3 (not included) - Closed interval from 3 to 4 - Open line to left of 3 extending to negative infinity.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad