Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To simplify the expression \( \frac{-2(a-1)(a+2)(a-2)}{2(1-a)} \), notice that the numerator is \( -2(a-1)(a+2)(a-2) \) and the denominator is \( 2(1-a) \). First, simplify the fraction by canceling out the common factor of 2 in the numerator and denominator: \[ \frac{-2(a-1)(a+2)(a-2)}{2(1-a)} = \frac{-(a-1)(a+2)(a-2)}{1-a} \] Now, observe that \( 1-a = -(a-1) \). You can substitute this back into the expression: \[ \frac{-(a-1)(a+2)(a-2)}{-(a-1)} = (a+2)(a-2) \quad \text{for } a \neq 1 \] Thus, the final simplified expression is: \[ (a+2)(a-2) = a^2 - 4 \quad \text{for } a \neq 1 \]
