Pregunta

Describe how to find the domain and range for the tangent function.

Ask by Chen Mccarthy. in India
Jan 23,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To find the domain and range of the tangent function: 1. **Domain**: All real numbers except where \( \cos(x) = 0 \), which is at \( x = \frac{\pi}{2} + k\pi \) for any integer \( k \). 2. **Range**: All real numbers, since the tangent function can take any value. So, the domain is all real numbers excluding \( x = \frac{\pi}{2} + k\pi \), and the range is all real numbers.

Solución

To find the domain and range of the tangent function, we can follow these steps: ### Step 1: Understanding the Tangent Function The tangent function is defined as: \[ \tan(x) = \frac{\sin(x)}{\cos(x)} \] This means that the tangent function is undefined wherever the cosine function is equal to zero, as division by zero is not allowed. ### Step 2: Finding the Domain 1. **Identify where \(\cos(x) = 0\)**: The cosine function is equal to zero at: \[ x = \frac{\pi}{2} + k\pi \quad \text{for } k \in \mathbb{Z} \] This means that the tangent function is undefined at these points. 2. **Express the Domain**: The domain of the tangent function can be expressed as: \[ \text{Domain: } x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\} \] In simpler terms, the domain includes all real numbers except for the points where \(x\) is an odd multiple of \(\frac{\pi}{2}\). ### Step 3: Finding the Range 1. **Behavior of the Tangent Function**: The tangent function can take on any real value. As \(x\) approaches the points where the function is undefined (i.e., \(\frac{\pi}{2} + k\pi\)), the value of \(\tan(x)\) approaches \(\infty\) or \(-\infty\). 2. **Express the Range**: Therefore, the range of the tangent function is: \[ \text{Range: } y \in \mathbb{R} \] This means that the tangent function can output any real number. ### Summary - **Domain**: \(x \in \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}\) - **Range**: \(y \in \mathbb{R}\) This concludes the process of finding the domain and range of the tangent function.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the domain of the tangent function, you need to remember that tangent is defined as the ratio of sine to cosine (tan(x) = sin(x)/cos(x)). This means the function is undefined when cos(x) = 0, which occurs at odd multiples of π/2 (like ±π/2, ±3π/2, etc.). Therefore, the domain of the tangent function is all real numbers except those where x = (2n + 1)π/2, where n is any integer. For the range, it's a little more straightforward! The tangent function can take on any real number value, so its range is all real numbers (-∞, ∞). You can visualize this by looking at the behavior of the tangent function as it approaches its vertical asymptotes at odd multiples of π/2—it goes to positive infinity on one side and negative infinity on the other, encompassing all possible y-values!

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad