Pregunta
upstudy study bank question image url

Is the function \( f(x)=5 x^{5}+7 x+8 \) even, odd, or neither?

Ask by Moran Rodriguez. in Canada
Nov 05,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( f(x) = 5x^5 + 7x + 8 \) is neither even nor odd.

Solución

To determine whether the function \( f(x) = 5x^5 + 7x + 8 \) is even, odd, or neither, we need to evaluate \( f(-x) \) and compare it to \( f(x) \) and \(-f(x)\). 1. **Calculate \( f(-x) \)**: \[ f(-x) = 5(-x)^5 + 7(-x) + 8 \] Since \( (-x)^5 = -x^5 \) and \( -x \) is just \(-x\), we have: \[ f(-x) = 5(-x^5) + 7(-x) + 8 = -5x^5 - 7x + 8 \] 2. **Compare \( f(-x) \) with \( f(x) \)**: \[ f(x) = 5x^5 + 7x + 8 \] Clearly, \( f(-x) \neq f(x) \), so the function is not even. 3. **Compare \( f(-x) \) with \(-f(x)\)**: \[ -f(x) = -(5x^5 + 7x + 8) = -5x^5 - 7x - 8 \] Now, we see that: \[ f(-x) = -5x^5 - 7x + 8 \quad \text{and} \quad -f(x) = -5x^5 - 7x - 8 \] Since \( f(-x) \neq -f(x) \), the function is not odd. Since \( f(x) \) is neither even nor odd, we conclude that the function \( f(x) = 5x^5 + 7x + 8 \) is **neither** even nor odd.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine if the function \( f(x) = 5x^5 + 7x + 8 \) is even, odd, or neither, we can check the properties of even and odd functions. A function is even if \( f(-x) = f(x) \) and odd if \( f(-x) = -f(x) \). Calculating \( f(-x) \): \[ f(-x) = 5(-x)^5 + 7(-x) + 8 = -5x^5 - 7x + 8 \] Now, compare \( f(-x) \) to \( f(x) \) and \( -f(x) \): 1. \( f(-x) \) does not equal \( f(x) \), so it is not even. 2. Comparing \( f(-x) \) to \( -f(x) \): \[ -f(x) = - (5x^5 + 7x + 8) = -5x^5 - 7x - 8 \] Since \( f(-x) \neq -f(x) \) (the constant term \( +8 \) doesn't match \( -8 \)), the function is not odd either. Thus, \( f(x) \) is neither even nor odd. To understand how functions are categorized as even or odd, it often helps to visualize their graphs. An even function will have symmetrical properties across the y-axis, while odd functions will have rotational symmetry around the origin. This distinction could make for some interesting patterns when plotting different polynomial functions! Also, keep in mind common mistakes like forgetting to apply the negative sign correctly or misanalyzing the constants, which can easily lead to incorrect conclusions about the function's properties. Always double-check your calculations!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad