Pregunta
upstudy study bank question image url

\( 1, \overline{23}-1,4= \) Hint: first convert \( 1, \overline{23} \) to its simplest ractional form.

Ask by Dawson Guerrero. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The result of \( 1, \overline{23} - 1.4 \) is \( \frac{-83}{495} \).

Solución

To solve the expression \( 1, \overline{23} - 1.4 \), we first need to convert \( 1, \overline{23} \) into its simplest fractional form. ### Step 1: Convert \( 1, \overline{23} \) to a Fraction Let \( x = 1, \overline{23} \). This means that \( x = 1.232323...\). To eliminate the repeating decimal, we can multiply \( x \) by 100 (since the repeating part has two digits): \[ 100x = 123.232323... \] Now, we can set up the equation: \[ 100x - x = 123.232323... - 1.232323... \] This simplifies to: \[ 99x = 122 \] Now, we can solve for \( x \): \[ x = \frac{122}{99} \] ### Step 2: Simplify the Fraction Next, we need to simplify \( \frac{122}{99} \). We can find the greatest common divisor (GCD) of 122 and 99. The prime factorization of 122 is \( 2 \times 61 \), and the prime factorization of 99 is \( 3^2 \times 11 \). Since they have no common factors, the GCD is 1. Thus, \( \frac{122}{99} \) is already in its simplest form. ### Step 3: Convert \( 1.4 \) to a Fraction Now, we convert \( 1.4 \) to a fraction: \[ 1.4 = \frac{14}{10} = \frac{7}{5} \] ### Step 4: Perform the Subtraction Now we need to perform the subtraction: \[ 1, \overline{23} - 1.4 = \frac{122}{99} - \frac{7}{5} \] To subtract these fractions, we need a common denominator. The least common multiple (LCM) of 99 and 5 is \( 495 \). Now we convert both fractions: \[ \frac{122}{99} = \frac{122 \times 5}{99 \times 5} = \frac{610}{495} \] \[ \frac{7}{5} = \frac{7 \times 99}{5 \times 99} = \frac{693}{495} \] Now we can subtract: \[ \frac{610}{495} - \frac{693}{495} = \frac{610 - 693}{495} = \frac{-83}{495} \] ### Final Answer Thus, the result of \( 1, \overline{23} - 1.4 \) is: \[ \frac{-83}{495} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To convert \( 1, \overline{23} \) into its simplest fractional form, we first express it as \( 1 + 0, \overline{23} \). The repeating decimal \( 0, \overline{23} \) can be transformed to a fraction by letting \( x = 0, \overline{23} \). Then, \( 100x = 23, \overline{23} \). By subtracting the two equations, we have \( 99x = 23 \), resulting in \( x = \frac{23}{99} \). So, \( 1, \overline{23} = 1 + \frac{23}{99} = \frac{99 + 23}{99} = \frac{122}{99} \). Now, substituting this into the original equation gives us: \[ \frac{122}{99} - 1.4 = \frac{122}{99} - \frac{14}{10} = \frac{122}{99} - \frac{139.6}{99} = \frac{122 - 139.6}{99} = \frac{-17.6}{99} \] To simplify further, we can express \(-17.6\) as \(-\frac{176}{10}\), leading to: \[ \frac{-176}{990} \text{ (after converting 17.6 to a fraction over 990)} \] So, the final simplified expression becomes \(\frac{-88}{495}\). Thus, the answer is \( \frac{-88}{495} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad