If \( \cos B=\frac{p}{\sqrt{5}} \) Whare \( p<0 \) and \( B E\left(180^{\circ}, 360^{\circ}\right) \) Determince using a diagriam an expression in terms of \( P \) for: (a) \( \operatorname{Tan} B \) (b) \( \cos ^{2} B-\sin ^{2} B \) (c) \( \cos \left(180^{\circ}+B\right) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
Let's tackle each part using the given information about \( \cos B \) and the angle \( B \). ### (a) Determine \( \tan B \) If \( \cos B = \frac{p}{\sqrt{5}} \) and \( p < 0 \), we can find \( \sin B \) using the identity \( \sin^2 B + \cos^2 B = 1 \). 1. Start with \( \cos^2 B = \left(\frac{p}{\sqrt{5}}\right)^2 = \frac{p^2}{5} \). 2. Thus, \( \sin^2 B = 1 - \cos^2 B = 1 - \frac{p^2}{5} \). 3. Taking the square root, since \( B \) is in the intervals (180°, 360°) where sine is negative, we find \( \sin B = -\sqrt{1 - \frac{p^2}{5}} \). 4. Therefore, \( \tan B = \frac{\sin B}{\cos B} = \frac{-\sqrt{1 - \frac{p^2}{5}}}{\frac{p}{\sqrt{5}}} = \frac{-\sqrt{5(1 - \frac{p^2}{5})}}{p} = \frac{-\sqrt{5 - p^2}}{p} \). ### (b) Determine \( \cos^2 B - \sin^2 B \) Using the values derived: 1. We already have \( \cos^2 B = \frac{p^2}{5} \) and \( \sin^2 B = 1 - \frac{p^2}{5} \). 2. Now, substituting these in, we find: \[ \cos^2 B - \sin^2 B = \frac{p^2}{5} - (1 - \frac{p^2}{5}) = \frac{p^2}{5} - 1 + \frac{p^2}{5} = \frac{2p^2}{5} - 1. \] ### (c) Determine \( \cos(180^{\circ} + B) \) Using the cosine sum identity: 1. We know \( \cos(180 + B) = -\cos B \). 2. Therefore, substituting \( \cos B = \frac{p}{\sqrt{5}} \): \[ \cos(180^{\circ} + B) = -\frac{p}{\sqrt{5}}. \] Bringing all parts together, we have: (a) \( \tan B = \frac{-\sqrt{5 - p^2}}{p} \) (b) \( \cos^2 B - \sin^2 B = \frac{2p^2}{5} - 1 \) (c) \( \cos(180^{\circ} + B) = -\frac{p}{\sqrt{5}} \)
