Pregunta
upstudy study bank question image url

If \( \cos B=\frac{p}{\sqrt{5}} \) Whare \( p<0 \) and \( B E\left(180^{\circ}, 360^{\circ}\right) \) Determince using a diagriam an expression in terms of \( P \) for: (a) \( \operatorname{Tan} B \) (b) \( \cos ^{2} B-\sin ^{2} B \) (c) \( \cos \left(180^{\circ}+B\right) \)

Ask by Tucker Mccarthy. in South Africa
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) \( \tan B = -\frac{\sqrt{5 - p^2}}{p} \) (b) \( \cos^2 B - \sin^2 B = \frac{2p^2 - 5}{5} \) (c) \( \cos(180^\circ + B) = -\frac{p}{\sqrt{5}} \)

Solución

We are given that   cos B = p/√5  with p < 0 and that B is in the interval 180° < B < 360°. Notice that in this range cosine is negative. (In fact, cosine is negative in quadrant II and III; here, since B is between 180° and 360°, it must be in quadrant III where both cosine and sine are negative.) Below is one way to “see” the answer by drawing a right–triangle diagram (for the reference angle) and then assigning the proper signs. ────────────────────────────── Step 1. Drawing the Diagram Imagine the terminal side of angle B in quadrant III. Drop a perpendicular from the point on the terminal side to the horizontal axis. The resulting right triangle (the reference triangle) has:  • an adjacent side (along the x–axis) of length |p| (since cos B = p/√5 and p < 0, we use the absolute value for the triangle’s side but then assign the negative sign later for the cosine);  • a hypotenuse of length √5;  • an opposite side, whose length by the Pythagorean theorem is √( (√5)² − (|p|)²) = √(5 − p²). Since B is in quadrant III both the x–coordinate (adjacent) and the y–coordinate (opposite) are negative. Thus,  • cos B = (–|p|)/√5 = p/√5   (since p is already negative),  • sin B = –√(5 – p²)/√5. ────────────────────────────── Now we can find the requested expressions in terms of p. ────────────────────────────── (a) Find tan B By definition,  tan B = sin B / cos B. Substitute the expressions we have:  tan B = (–√(5 – p²)/√5) / (p/√5)      = –√(5 – p²)/p. Thus,  tan B = –√(5 – p²)/p.                    (Answer (a)) ────────────────────────────── ────────────────────────────── (b) Find cos²B – sin²B One method is to recall that  cos²B – sin²B = 2 cos²B – 1     (a standard double–angle formula) We know cos B = p/√5, so  cos²B = (p²)/5. Thus,  cos²B – sin²B = 2(p²/5) – 1 = (2p² – 5)/5.                    (Answer (b)) Alternatively, you could recognize that cos²B – sin²B is cos 2B, but the answer in terms of p is as above. ────────────────────────────── ────────────────────────────── (c) Find cos(180° + B) A standard trigonometric identity tells us that for any angle (or B),  cos(180° + B) = –cos B. Since cos B = p/√5, it follows that  cos(180° + B) = –(p/√5) = –p/√5.                    (Answer (c)) ────────────────────────────── Thus, our final answers are:  (a) tan B = –√(5 – p²)/p  (b) cos²B – sin²B = (2p² – 5)/5  (c) cos(180° + B) = –p/√5 These answers are expressed in terms of p, with the understanding that in the diagram the lengths are taken as positive and then the appropriate negative signs are attached for the quadrant III position.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's tackle each part using the given information about \( \cos B \) and the angle \( B \). ### (a) Determine \( \tan B \) If \( \cos B = \frac{p}{\sqrt{5}} \) and \( p < 0 \), we can find \( \sin B \) using the identity \( \sin^2 B + \cos^2 B = 1 \). 1. Start with \( \cos^2 B = \left(\frac{p}{\sqrt{5}}\right)^2 = \frac{p^2}{5} \). 2. Thus, \( \sin^2 B = 1 - \cos^2 B = 1 - \frac{p^2}{5} \). 3. Taking the square root, since \( B \) is in the intervals (180°, 360°) where sine is negative, we find \( \sin B = -\sqrt{1 - \frac{p^2}{5}} \). 4. Therefore, \( \tan B = \frac{\sin B}{\cos B} = \frac{-\sqrt{1 - \frac{p^2}{5}}}{\frac{p}{\sqrt{5}}} = \frac{-\sqrt{5(1 - \frac{p^2}{5})}}{p} = \frac{-\sqrt{5 - p^2}}{p} \). ### (b) Determine \( \cos^2 B - \sin^2 B \) Using the values derived: 1. We already have \( \cos^2 B = \frac{p^2}{5} \) and \( \sin^2 B = 1 - \frac{p^2}{5} \). 2. Now, substituting these in, we find: \[ \cos^2 B - \sin^2 B = \frac{p^2}{5} - (1 - \frac{p^2}{5}) = \frac{p^2}{5} - 1 + \frac{p^2}{5} = \frac{2p^2}{5} - 1. \] ### (c) Determine \( \cos(180^{\circ} + B) \) Using the cosine sum identity: 1. We know \( \cos(180 + B) = -\cos B \). 2. Therefore, substituting \( \cos B = \frac{p}{\sqrt{5}} \): \[ \cos(180^{\circ} + B) = -\frac{p}{\sqrt{5}}. \] Bringing all parts together, we have: (a) \( \tan B = \frac{-\sqrt{5 - p^2}}{p} \) (b) \( \cos^2 B - \sin^2 B = \frac{2p^2}{5} - 1 \) (c) \( \cos(180^{\circ} + B) = -\frac{p}{\sqrt{5}} \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad