Pregunta
EXERCISE 1 1. Expand and simplify: \( \begin{array}{ll}\text { (a) } 2 x(x+2) & \text { (l) }(x+2)^{2}\end{array} \)
Ask by Evans Franklin. in South Africa
Feb 19,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( 2x(x + 2) = 2x^2 + 4x \)
\( (x + 2)^2 = x^2 + 4x + 4 \)
Solución
Simplify the expression by following steps:
- step0: Calculate:
\(\left(x+2\right)^{2}\)
- step1: Calculate:
\(x^{2}+4x+4\)
Expand the expression \( 2 x (x + 2) \)
Simplify the expression by following steps:
- step0: Multiply the terms:
\(2x\left(x+2\right)\)
- step1: Apply the distributive property:
\(2x\times x+2x\times 2\)
- step2: Multiply the terms:
\(2x^{2}+4x\)
Let's expand and simplify the given expressions step by step.
### (a) Expand \( 2x(x + 2) \)
1. Distribute \( 2x \) to both terms inside the parentheses:
\[
2x(x + 2) = 2x \cdot x + 2x \cdot 2
\]
2. This results in:
\[
2x^2 + 4x
\]
### (l) Expand \( (x + 2)^{2} \)
1. Use the formula for the square of a binomial, \( (a + b)^2 = a^2 + 2ab + b^2 \):
\[
(x + 2)^{2} = x^{2} + 2 \cdot x \cdot 2 + 2^{2}
\]
2. This results in:
\[
x^{2} + 4x + 4
\]
### Final Results
- For \( 2x(x + 2) \): \( 2x^2 + 4x \)
- For \( (x + 2)^{2} \): \( x^{2} + 4x + 4 \)
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To expand and simplify \(2x(x+2)\), you multiply \(2x\) by each term inside the parentheses: \(2x(x+2) = 2x^2 + 4x.\) Now, for \((x+2)^2\), you apply the formula for the square of a binomial: \((x+2)^2 = x^2 + 4x + 4.\) So your final simplified forms are: (a) \(2x^2 + 4x\) and (l) \(x^2 + 4x + 4.\)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium