e. \( \left(\frac{5^{x}}{2}\right)^{2} \quad \) f. \( 9^{2 x} \div 9^{x} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
Let's break down each expression to make it fun and easy! In the first expression, \( \left(\frac{5^{x}}{2}\right)^{2} \) can be expanded to \( \frac{(5^{x})^{2}}{2^{2}} \), which simplifies to \( \frac{25^{x}}{4} \). It’s like bringing a little magic by transforming the fraction into a neat power! For the second expression, \( 9^{2x} \div 9^{x} \) can be simplified using the law of exponents, \( a^{m} \div a^{n} = a^{m-n} \). So, we get \( 9^{2x-x} = 9^{x} \). Voilà! Simple division turns into an elegant expression, showcasing how easily exponents play together.
