Pregunta
upstudy study bank question image url

Analyze the graph of the function \( F(x)=\frac{x^{2}-12 x+32}{x^{2}-8 x+16} \).

Ask by Rodriquez Bush. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( F(x)=\frac{x^{2}-12x+32}{x^{2}-8x+16} \) is undefined at \( x = 4 \). So, its domain is all real numbers except \( x = 4 \).

Solución

The function \( F(x)=\frac{x^{2}-12x+32}{x^{2}-8x+16} \) does not have any specific domain restrictions based on the provided information. To determine the domain of the function, we need to consider the values of \( x \) for which the denominator is not equal to zero. The denominator of the function is \( x^{2}-8x+16 \). To find the values of \( x \) for which the denominator is not equal to zero, we need to solve the equation \( x^{2}-8x+16 = 0 \). Let's solve the equation \( x^{2}-8x+16 = 0 \) to determine the domain of the function. Solve the quadratic equation by following steps: - step0: Solve by factoring: \(x^{2}-8x+16=0\) - step1: Factor the expression: \(\left(x-4\right)^{2}=0\) - step2: Simplify the expression: \(x-4=0\) - step3: Move the constant to the right side: \(x=0+4\) - step4: Remove 0: \(x=4\) The solutions to the equation \( x^{2}-8x+16 = 0 \) are \( x = 4 \). This means that the denominator of the function is zero when \( x = 4 \), and the function is undefined at this point. Therefore, the domain of the function \( F(x)=\frac{x^{2}-12x+32}{x^{2}-8x+16} \) is all real numbers except \( x = 4 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To analyze the function \( F(x) = \frac{x^{2}-12x+32}{x^{2}-8x+16} \), let's start with some key insights. First, the denominator can be rewritten as \( (x-4)^2 \), indicating a potential vertical asymptote at \( x = 4 \). The numerator, \( x^2 - 12x + 32 \), simplifies to \( (x-6)(x-6) \) when factored, resulting in a double root at \( x = 6 \). This means the function touches and bounces off the x-axis at this point. Now, let’s also consider the behavior of \( F(x) \) as \( x \) approaches infinity. As \( x \) becomes very large or very small, the leading terms dominate, allowing us to evaluate the horizontal asymptote. Both the numerator and denominator are quadratic, meaning we can simplify the function to \( F(x) \approx 1 \) as \( x \to \pm \infty \). Therefore, the horizontal asymptote is \( y = 1 \). Overall, expect a function that approaches \( y = 1 \) with a significant behavior change around \( x = 4 \) and has a bounce off at \( x = 6 \).

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad