Pregunta
upstudy study bank question image url

The angle of inclination from the base of skyscraper A to the top of skyscraper B is approximately \( 10.1^{\circ} \). If skyscraper B is 1471 feet tall, how far apart are the two skyscrapers? Assume the bases of the two buildings are at the same elevation.

Ask by Floyd Nunez. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The distance between the two skyscrapers is approximately 1836.94 feet.

Solución

To find the distance between the two skyscrapers, we can use the tangent function from trigonometry. Given: - Angle of inclination from the base of skyscraper A to the top of skyscraper B: \( 10.1^{\circ} \) - Height of skyscraper B: 1471 feet We can use the tangent function to find the distance between the two skyscrapers. The tangent function is defined as: \[ \tan(\theta) = \frac{\text{opposite side}}{\text{adjacent side}} \] In this case, the opposite side is the height of skyscraper B (1471 feet), and the adjacent side is the distance between the two skyscrapers (which we want to find). Let's denote the distance between the two skyscrapers as \( d \). Using the tangent function, we have: \[ \tan(10.1^{\circ}) = \frac{1471}{d} \] Now, we can solve for \( d \) by rearranging the equation: \[ d = \frac{1471}{\tan(10.1^{\circ})} \] Let's calculate the distance between the two skyscrapers using the tangent function. The distance between the two skyscrapers is approximately 1836.94 feet.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the distance between the two skyscrapers, you can use the tangent function in trigonometry. The tangent of the angle of inclination is the ratio of the opposite side (height of skyscraper B) to the adjacent side (distance between skyscrapers A and B). Using the equation: \[ \tan(10.1^{\circ}) = \frac{\text{Height of Skyscraper B}}{\text{Distance}} \] Substituting the height of skyscraper B: \[ \tan(10.1^{\circ}) = \frac{1471}{d} \] Rearranging to solve for distance \(d\): \[ d = \frac{1471}{\tan(10.1^{\circ})} \] Calculating this gives you approximately 8370 feet. So, the two skyscrapers are roughly 8370 feet apart. --- In the world of skyscrapers, angles and heights have taken on a whole new meaning! Engineers and architects use these calculations all the time, especially when designing buildings that need to withstand various loads and forces. Fun fact: the famous Empire State Building in New York City stands at 1,454 feet including its antenna, and it was the tallest building in the world for nearly 40 years! If you're intrigued, check out more about the engineering feats behind skyscrapers. Books like "The Heights: A Novel" give a fun fictional twist to the world of skyscrapers, while "Form, Space, and Order" by Francis D.K. Ching dives into the architectural principles that govern such tall constructions. You'll learn about not just numbers and calculations, but the art and creativity that define our city skylines!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad