Pregunta
upstudy study bank question image url

\( \left. \begin{array} { l } { 5 \quad \sin 4 x \sin 3 x + \cos 4 x \cos 3 x } \\ { 6 \quad \sin ( 90 ^ { \circ } - x ) \cos x + \cos ( 90 ^ { \circ } + x ) \sin x } \end{array} \right. \)

Ask by Cervantes Cross. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The first expression simplifies to \( 3 \cos x - 2 \cos 7x \) and the second expression simplifies to \( 7 \cos^2 x - 1 \).

Solución

Let's solve the two expressions step by step. ### Expression 1: \[ 5 \quad \sin 4x \sin 3x + \cos 4x \cos 3x \] This expression can be simplified using the product-to-sum identities. The identity states: \[ \sin A \sin B = \frac{1}{2} [\cos (A - B) - \cos (A + B)] \] \[ \cos A \cos B = \frac{1}{2} [\cos (A - B) + \cos (A + B)] \] Applying these identities, we have: 1. For \( \sin 4x \sin 3x \): \[ \sin 4x \sin 3x = \frac{1}{2} [\cos (4x - 3x) - \cos (4x + 3x)] = \frac{1}{2} [\cos x - \cos 7x] \] 2. For \( \cos 4x \cos 3x \): \[ \cos 4x \cos 3x = \frac{1}{2} [\cos (4x - 3x) + \cos (4x + 3x)] = \frac{1}{2} [\cos x + \cos 7x] \] Now substituting these back into the expression: \[ 5 \left( \frac{1}{2} [\cos x - \cos 7x] \right) + \frac{1}{2} [\cos x + \cos 7x] \] Combining these: \[ = \frac{5}{2} (\cos x - \cos 7x) + \frac{1}{2} (\cos x + \cos 7x) \] \[ = \frac{5}{2} \cos x - \frac{5}{2} \cos 7x + \frac{1}{2} \cos x + \frac{1}{2} \cos 7x \] \[ = \left( \frac{5}{2} + \frac{1}{2} \right) \cos x + \left( -\frac{5}{2} + \frac{1}{2} \right) \cos 7x \] \[ = 3 \cos x - 2 \cos 7x \] ### Expression 2: \[ 6 \quad \sin (90^{\circ} - x) \cos x + \cos (90^{\circ} + x) \sin x \] Using the co-function identities: 1. \( \sin (90^{\circ} - x) = \cos x \) 2. \( \cos (90^{\circ} + x) = -\sin x \) Substituting these into the expression: \[ 6 \cos x \cos x + (-\sin x) \sin x \] \[ = 6 \cos^2 x - \sin^2 x \] Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \), we can express \( \sin^2 x \) as \( 1 - \cos^2 x \): \[ = 6 \cos^2 x - (1 - \cos^2 x) \] \[ = 6 \cos^2 x - 1 + \cos^2 x \] \[ = 7 \cos^2 x - 1 \] ### Final Results: 1. The first expression simplifies to: \[ 3 \cos x - 2 \cos 7x \] 2. The second expression simplifies to: \[ 7 \cos^2 x - 1 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the expression \(5 \quad \sin 4 x \sin 3 x + \cos 4 x \cos 3 x\) can be simplified using the cosine addition formula? Specifically, it can be rewritten as \(5 \cos(4x - 3x) = 5 \cos x\). This simplification reveals the beautiful synergy in trigonometric identities! For the second expression, \(6 \quad \sin(90^\circ - x) \cos x + \cos(90^\circ + x) \sin x\), utilizing cofunction and periodic properties of sine and cosine can help. Rewrite \( \sin(90^\circ - x) \) as \( \cos x \) and \( \cos(90^\circ + x) \) as \( -\sin x \). This gives you \(6 \cos x \cos x - 6 \sin x \sin x\), which simplifies to \(6(\cos^2 x - \sin^2 x) = 6\cos 2x\). Fun, right?

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad