\( \left. \begin{array} { l } { 5 \quad \sin 4 x \sin 3 x + \cos 4 x \cos 3 x } \\ { 6 \quad \sin ( 90 ^ { \circ } - x ) \cos x + \cos ( 90 ^ { \circ } + x ) \sin x } \end{array} \right. \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
Did you know that the expression \(5 \quad \sin 4 x \sin 3 x + \cos 4 x \cos 3 x\) can be simplified using the cosine addition formula? Specifically, it can be rewritten as \(5 \cos(4x - 3x) = 5 \cos x\). This simplification reveals the beautiful synergy in trigonometric identities! For the second expression, \(6 \quad \sin(90^\circ - x) \cos x + \cos(90^\circ + x) \sin x\), utilizing cofunction and periodic properties of sine and cosine can help. Rewrite \( \sin(90^\circ - x) \) as \( \cos x \) and \( \cos(90^\circ + x) \) as \( -\sin x \). This gives you \(6 \cos x \cos x - 6 \sin x \sin x\), which simplifies to \(6(\cos^2 x - \sin^2 x) = 6\cos 2x\). Fun, right?
