4: Trigonometric Functions - Basic Level \[ \text { Question } 4 \text { of } 9 \] What is the period of \( f(x) \) ?
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
The period of a trigonometric function is a fundamental characteristic that tells us how often the function repeats its values. For sine and cosine functions, the period is \( 2\pi \), meaning they complete one full cycle over that interval. If you're working with tangent or cotangent functions, they have a period of \( \pi \). When you have transformations, such as \( f(x) = \sin(kx) \) or \( f(x) = \cos(kx) \), the period changes according to the formula \( \text{Period} = \frac{2\pi}{|k|} \). Always keep performance in mind—varied periods can depict different wave properties, crucial in applications like sound, light, and oscillatory systems.
