\( \frac { \cos ( 180 ^ { \circ } + \theta ) \cdot \tan ( - \theta ) } { \operatorname { in } ( 360 ^ { \circ } - \theta ) \cdot \tan ( 720 ^ { \circ } + \theta ) } \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To tackle this expression, first recall that \( \cos(180^\circ + \theta) = -\cos(\theta) \) and \( \tan(-\theta) = -\tan(\theta) \). This means that the numerator becomes \( \cos(180^\circ + \theta) \cdot \tan(-\theta) = -\cos(\theta) \cdot (-\tan(\theta) ) = \cos(\theta) \cdot \tan(\theta) \). For the denominator, we note \( \tan(720^\circ + \theta) = \tan(\theta) \) since tangent has a period of \( 180^\circ \). Therefore, the denominator simplifies to \( \ln(360^\circ - \theta) \cdot \tan(\theta) \). Putting it all together: \[ \frac{\cos(\theta) \cdot \tan(\theta)}{\ln(360^\circ - \theta) \cdot \tan(\theta)} \] If \( \tan(\theta) \neq 0 \), we can cancel it out: \[ \frac{\cos(\theta)}{\ln(360^\circ - \theta)} \] As long as \( \theta \) does not make the tangent undefined, this is your simplified expression!
