Pregunta
upstudy study bank question image url

\( \frac { \cos ( 180 ^ { \circ } + \theta ) \cdot \tan ( - \theta ) } { \operatorname { in } ( 360 ^ { \circ } - \theta ) \cdot \tan ( 720 ^ { \circ } + \theta ) } \)

Ask by Wang Huff. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The simplified result is –cot θ.

Solución

We start with the expression   [cos(180° + θ) · tan(–θ)] / [sin(360° – θ) · tan(720° + θ)] (Note: The notation "in" was interpreted as sin.) Step 1. Simplify the functions using standard trigonometric identities: • cos(180° + θ) = –cos θ • tan(–θ) = –tan θ • sin(360° – θ) = –sin θ   (This is because sin(360° – θ) = sin 360°·cos θ – cos 360°·sin θ = 0·cos θ – 1·sin θ = –sin θ.) • tan(720° + θ) = tan θ   (since tangent has period 180° and 720° is a multiple of 180°) Step 2. Substitute these results into the expression:   Numerator: (–cos θ) · (–tan θ) = cos θ · tan θ   Denominator: (–sin θ) · (tan θ) = –sin θ · tan θ Thus the expression becomes   [cos θ · tan θ] / [–sin θ · tan θ]. Step 3. Cancel the common factor tan θ (assuming tan θ ≠ 0):   = cos θ / (–sin θ)   = –(cos θ/sin θ)   = –cot θ. Therefore, the simplified result is   –cot θ.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To tackle this expression, first recall that \( \cos(180^\circ + \theta) = -\cos(\theta) \) and \( \tan(-\theta) = -\tan(\theta) \). This means that the numerator becomes \( \cos(180^\circ + \theta) \cdot \tan(-\theta) = -\cos(\theta) \cdot (-\tan(\theta) ) = \cos(\theta) \cdot \tan(\theta) \). For the denominator, we note \( \tan(720^\circ + \theta) = \tan(\theta) \) since tangent has a period of \( 180^\circ \). Therefore, the denominator simplifies to \( \ln(360^\circ - \theta) \cdot \tan(\theta) \). Putting it all together: \[ \frac{\cos(\theta) \cdot \tan(\theta)}{\ln(360^\circ - \theta) \cdot \tan(\theta)} \] If \( \tan(\theta) \neq 0 \), we can cancel it out: \[ \frac{\cos(\theta)}{\ln(360^\circ - \theta)} \] As long as \( \theta \) does not make the tangent undefined, this is your simplified expression!

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad