Pregunta
Subtract. \( \frac{2 x}{2 x-5}-\frac{5}{2 x-5} \) \( \frac{2 x}{2 x-5}-\frac{5}{2 x-5}=\square \) (Simplify your answer.)
Ask by Rose Salinas. in the United States
Dec 05,2024
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The expression simplifies to 1.
Solución
To subtract the two fractions \( \frac{2x}{2x-5} - \frac{5}{2x-5} \), we can combine them since they have a common denominator.
The expression can be rewritten as:
\[
\frac{2x - 5}{2x - 5}
\]
Now, we simplify the numerator:
\[
2x - 5
\]
Thus, the expression becomes:
\[
\frac{2x - 5}{2x - 5}
\]
Since the numerator and denominator are the same (and assuming \( 2x - 5 \neq 0 \)), we can simplify this to:
\[
1
\]
Therefore, the final answer is:
\[
\boxed{1}
\]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To simplify the expression, since both fractions have a common denominator of \( 2x - 5 \), we can combine them: \[ \frac{2x}{2x - 5} - \frac{5}{2x - 5} = \frac{2x - 5}{2x - 5} \] Now, simplifying the numerator: \[ \frac{2x - 5}{2x - 5} = 1 \] So, the simplified expression is: \[ \frac{2x}{2x-5} - \frac{5}{2x-5} = 1 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium