\( \left(\frac{x^{5} y^{4}}{w z^{5}}\right)^{-5} \) A. \( \frac{w^{5} z^{25}}{x^{25} y^{20}} \) B. \( x^{25} y^{20} w^{5} z^{25} \) C. \( \frac{x^{25} y^{20}}{w^{5} z^{25}} \) D. \( \frac{w z^{25}}{x^{25} y^{20}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To solve \( \left(\frac{x^{5} y^{4}}{w z^{5}}\right)^{-5} \), we'll apply the negative exponent rule, which implies that we need to take the reciprocal of the base and raise it to the positive exponent. This transforms our expression into \( \left(\frac{w z^{5}}{x^{5} y^{4}}\right)^{5} \). When we raise each part of the fraction to the fifth power, we get \( \frac{w^{5} z^{25}}{x^{25} y^{20}} \). Thus, the correct answer is A. For clarity, it's always a good idea to double-check our steps in such transformations, ensuring our bases and exponents are handled correctly for accurate results. Mixing up signs and placements can lead to some common mistakes!
