Pregunta
upstudy study bank question image url

Find the integral. \( \int\left(x^{4}-2 x^{3}\right)^{4}\left(4 x^{3}-6 x^{2}\right) d x \) A. \( \frac{1}{5}\left(x^{4}-2 x^{3}\right)^{5}+C \) B. \( \frac{1}{4}\left(x^{4}-2 x^{3}\right)^{4}+C \) C. \( \left(x^{4}-2 x^{3}\right)^{5}+C \) D. \( 4 x^{3}-6 x^{2}+C \)

Ask by Gardner Howell. in the United States
Nov 22,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct answer is A. \( \frac{1}{5}\left(x^{4}-2 x^{3}\right)^{5}+C \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

To solve the integral \( \int\left(x^{4}-2 x^{3}\right)^{4}\left(4 x^{3}-6 x^{2}\right) d x \), we can use substitution. Let \( u = x^{4} - 2x^{3} \). Then, the derivative \( \frac{du}{dx} = 4x^{3} - 6x^{2} \), so \( du = (4x^{3} - 6x^{2}) dx \). Substituting into the integral gives us \( \int u^{4} du \), which integrates to \( \frac{1}{5} u^{5} + C \). Re-substituting for \( u \), we get \( \frac{1}{5} (x^{4} - 2x^{3})^{5} + C \). Thus, the correct answer is (A) \( \frac{1}{5}\left(x^{4}-2 x^{3}\right)^{5}+C \). Did you know the method of substitution, also known as “u-substitution,” is like a magic trick in calculus? It helps simplify complex integrals into more manageable forms. By cleverly changing variables, you can often transform an intimidating expression into something much simpler to integrate! Also, keep in mind that mastering integration involves recognizing patterns. The more you practice, the more you'll start to see integral forms that can be simplified using tricks like substitution, integration by parts, or trigonometric identities. Don’t worry if you make mistakes; they're just stepping stones to becoming an integration pro!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad