The inertia tensor for an ellipsoid with semi-axes \( a, b \), and \( c \), and mass \( m \) rotated about the center of mass is \( \left[\begin{array}{lc}\frac{1}{5} m\left(b^{2}+c^{2}\right) \\ 0 & \frac{1}{5} m\left(a^{2}+c^{2}\right) \\ 0 & 0 \\ \text { axes if } a=4, b=7, c=8 \text {, and } m=1 \text { ? } \\ \text { Enter the moments of inertia from smallest to largest. } \\ \text { First moment }=\text { Ex: } 1.23 \\ \text { Second moment }=\text { Ex: 1.23 } \\ \text { Third moment }=\text { Ex: 1.23 }\end{array}\right. \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find the moments of inertia for the ellipsoid with given dimensions \( a = 4 \), \( b = 7 \), \( c = 8 \), and mass \( m = 1 \), we can calculate each moment as follows: 1. **First Moment** (about x-axis): \( \frac{1}{5} m(b^{2} + c^{2}) = \frac{1}{5} \times 1 \times (7^{2} + 8^{2}) = \frac{1}{5} \times 1 \times (49 + 64) = \frac{113}{5} = 22.6 \). 2. **Second Moment** (about y-axis): \( \frac{1}{5} m(a^{2} + c^{2}) = \frac{1}{5} \times 1 \times (4^{2} + 8^{2}) = \frac{1}{5} \times 1 \times (16 + 64) = \frac{80}{5} = 16 \). 3. **Third Moment** (about z-axis): \( \frac{1}{5} m(a^{2} + b^{2}) = \frac{1}{5} \times 1 \times (4^{2} + 7^{2}) = \frac{1}{5} \times 1 \times (16 + 49) = \frac{65}{5} = 13 \). Putting these moments in order from smallest to largest: **First moment** = 13.0 **Second moment** = 16.0 **Third moment** = 22.6
