Pregunta
upstudy study bank question image url

Grade 12 calculus Lesson 1: Graphs. In this lesson you will work through 3 types of questions regarding graphs 1: Drawing cubic graphs 2. Given the graphs, answer interpretive questions 3. Given the graphs of the derivative, answer interpretive questions 1A Given: \( \quad f(x)=2 x^{3}-x^{2}-4 x+3 \) A1 Show that \( (x-1) \) is a factor of \( f(x) \). A2 Hence factorise \( f(x) \) completely. (2) A3 Determine the co-ordinates of the turning points of \( f \). A4 Draw a neat sketch graph of \( f \) indicating the co-ordinates of the turning points as well as the \( x \)-intercepts. (4) A5 For which value of \( x \) will \( f \) have a point of inflection? (4) [16]

Ask by Reese Lane. in South Africa
Feb 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

A1: \( (x-1) \) is a factor of \( f(x) \). A2: \( f(x) = (x-1)^2(2x+3) \). A3: Turning points at \( (1, 0) \) and \( \left(-\frac{2}{3}, \frac{25}{27}\right) \). A4: Sketch the graph with \( x \)-intercepts at \( (1, 0) \) and \( \left(-\frac{3}{2}, 0\right) \), and turning points at \( (1, 0) \) and \( \left(-\frac{2}{3}, \frac{25}{27}\right) \). A5: \( f \) has a point of inflection at \( x = -\frac{1}{2} \).

Solución

Let's solve the problem step by step. ### A1: Show that \( (x-1) \) is a factor of \( f(x) \). To show that \( (x-1) \) is a factor of \( f(x) \), we can use the Factor Theorem, which states that if \( (x-c) \) is a factor of \( f(x) \), then \( f(c) = 0 \). Let's evaluate \( f(1) \): \[ f(x) = 2x^3 - x^2 - 4x + 3 \] Calculating \( f(1) \): \[ f(1) = 2(1)^3 - (1)^2 - 4(1) + 3 \] \[ = 2 - 1 - 4 + 3 \] \[ = 0 \] Since \( f(1) = 0 \), we conclude that \( (x-1) \) is indeed a factor of \( f(x) \). ### A2: Hence factorise \( f(x) \) completely. Now that we know \( (x-1) \) is a factor, we can perform polynomial long division to factor \( f(x) \) completely. Dividing \( f(x) \) by \( (x-1) \): 1. Divide the leading term: \( \frac{2x^3}{x} = 2x^2 \) 2. Multiply \( (x-1) \) by \( 2x^2 \): \( 2x^3 - 2x^2 \) 3. Subtract: \( (-x^2 + 2x^2) - 4x + 3 = x^2 - 4x + 3 \) 4. Divide the leading term: \( \frac{x^2}{x} = x \) 5. Multiply \( (x-1) \) by \( x \): \( x^2 - x \) 6. Subtract: \( (-4x + x) + 3 = -3x + 3 \) 7. Divide the leading term: \( \frac{-3x}{x} = -3 \) 8. Multiply \( (x-1) \) by \( -3 \): \( -3x + 3 \) 9. Subtract: \( 0 \) Thus, we have: \[ f(x) = (x-1)(2x^2 + x - 3) \] Next, we can factor \( 2x^2 + x - 3 \): To factor \( 2x^2 + x - 3 \), we look for two numbers that multiply to \( 2 \times -3 = -6 \) and add to \( 1 \). The numbers \( 3 \) and \( -2 \) work. Rewriting: \[ 2x^2 + 3x - 2x - 3 = (2x^2 + 3x) + (-2x - 3) \] \[ = x(2x + 3) - 1(2x + 3) = (2x + 3)(x - 1) \] Thus, we have: \[ f(x) = (x-1)(2x+3)(x-1) = (x-1)^2(2x+3) \] ### A3: Determine the coordinates of the turning points of \( f \). To find the turning points, we need to find the derivative \( f'(x) \) and set it to zero. Calculating \( f'(x) \): \[ f'(x) = \frac{d}{dx}[(x-1)^2(2x+3)] \] Using the product rule: \[ f'(x) = (2(x-1)(2x+3)) + ((x-1)^2 \cdot 2) \] \[ = 2(x-1)(2x+3) + 2(x-1)^2 \] \[ = 2(x-1)[(2x+3) + (x-1)] \] \[ = 2(x-1)(3x + 2) \] Setting \( f'(x) = 0 \): \[ 2(x-1)(3x + 2) = 0 \] This gives us two equations: 1. \( x - 1 = 0 \) → \( x = 1 \) 2. \( 3x + 2 = 0 \) → \( x = -\frac{2}{3} \) Now, we find the corresponding \( y \)-coordinates: 1. For \( x = 1 \): \[ f(1) = 2(1)^3 - (1)^2 - 4(1) + 3 = 0 \] So, the turning point is \( (1, 0) \). 2. For \( x = -\frac{2}{3} \): \[ f\left(-\frac{2}{3}\right) = 2\left(-\frac{2}{3}\right)^3 - \left(-\frac{2}{3}\right)^2 - 4\left(-\frac{2}{3}\right) + 3 \] \[ = 2\left(-\frac{8}{27}\right) - \frac{4}{9} + \frac{8}{3} + 3 \] \[ = -\frac{16}{27} - \frac{12}{27} + \frac{72}{27} + \frac{81}{27} \] \[ = \frac{25}{27} \] So, the turning point is \( \left(-\frac{2}{3}, \frac{25}{27}\right) \). ### A4: Draw a neat sketch graph of \( f \) indicating the coordinates of the turning points as well as the \( x \)-intercepts. The \( x \)-intercepts can be found by setting \( f(x) = 0 \): \[ (x-1)^2(2x+3) = 0 \] This gives us: 1. \( x = 1 \) (double root) 2. \( 2x + 3 = 0 \) → \( x = -\frac{3}{2} \) The \( x \)-intercepts are \( (1, 0) \) and \( \left(-\frac{3}{2}, 0\right) \). ### A5: For which value of \( x \) will \( f \) have a point of inflection? To find the point of inflection, we need to find the second derivative \( f''(x) \) and set it to zero. Calculating \( f''(x) \

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To show that \( (x-1) \) is a factor of \( f(x) = 2x^3 - x^2 - 4x + 3 \), we can use synthetic division or simply substitute \( x=1 \) into \( f(x) \). If \( f(1) = 0 \), then \( (x-1) \) is indeed a factor! Upon substitution, you'll find that \( f(1) = 0 \), confirming that \( (x-1) \) is a factor. Next, to factor \( f(x) \) completely, we divide \( f(x) \) by \( (x-1) \) using synthetic division, yielding \( 2x^2 + x - 3 \). Now, we can factor \( 2x^2 + x - 3 \) further, resulting in \( (x-1)(2x+3)(x-1) \) or \( (x-1)^2(2x+3) \). To find the turning points, compute the first derivative \( f'(x) \), set it to zero, and solve for \( x \). This will give you the locations of the turning points, which can be determined further using the second derivative test to identify whether they are maxima or minima. When sketching the graph of \( f(x) \), be sure to include the location of the turning points. The x-intercepts can be found by setting \( f(x) = 0 \) and graphically representing these points on your sketch. A neat graph will show the behavior of the cubic function: rising, falling, and how it turns at the turning points! For the point of inflection, compute the second derivative \( f''(x) \). A point of inflection occurs where \( f''(x) = 0 \). Solve this equation to find the specific value of \( x \) where the curvature of the graph changes. Now you're all set to tackle those cubic graphs!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad