Responder
**Part (a): Solutions Using Substitution**
1. **Equations (1)**:
- \( x = 6 \), \( y = -2 \)
2. **Equations (2)**:
- \( x = 4 \), \( y = 10 \)
3. **Equations (3)**:
- \( x = 1 \), \( y = 1 \)
4. **Equations (4)**:
- \( x = 5 \), \( y = -2 \)
**Part (b): Solutions Using Elimination or Substitution**
1. **Equations (1)**:
- \( x = 1 \), \( y = 0 \)
2. **Equations (2)**:
- \( x = -\frac{16}{7} \), \( y = \frac{23}{7} \)
3. **Equations (3)**:
- \( x = 2 \), \( y = 3 \)
4. **Equations (4)**:
- \( x = 3 \), \( y = 3 \)
5. **Equations (5)**:
- \( x = 1 \), \( y = 1 \)
Solución
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}7x-3y=41\\3x-y=17\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}7x-3y=41\\y=-17+3x\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(7x-3\left(-17+3x\right)=41\)
- step3: Simplify:
\(-2x+51=41\)
- step4: Move the constant to the right side:
\(-2x=41-51\)
- step5: Subtract the numbers:
\(-2x=-10\)
- step6: Change the signs:
\(2x=10\)
- step7: Divide both sides:
\(\frac{2x}{2}=\frac{10}{2}\)
- step8: Divide the numbers:
\(x=5\)
- step9: Substitute the value of \(x:\)
\(y=-17+3\times 5\)
- step10: Calculate:
\(y=-2\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=5\\y=-2\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x=5\\y=-2\end{array}\right.\)
- step13: Rewrite:
\(\left(x,y\right) = \left(5,-2\right)\)
Solve the system of equations \( 3 x+2 y=6;5 x+3 y=11 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}3x+2y=6\\5x+3y=11\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=\frac{6-2y}{3}\\5x+3y=11\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(5\times \frac{6-2y}{3}+3y=11\)
- step3: Simplify:
\(\frac{5\left(6-2y\right)}{3}+3y=11\)
- step4: Multiply both sides of the equation by LCD:
\(\left(\frac{5\left(6-2y\right)}{3}+3y\right)\times 3=11\times 3\)
- step5: Simplify the equation:
\(30-y=33\)
- step6: Move the constant to the right side:
\(-y=33-30\)
- step7: Subtract the numbers:
\(-y=3\)
- step8: Change the signs:
\(y=-3\)
- step9: Substitute the value of \(y:\)
\(x=\frac{6-2\left(-3\right)}{3}\)
- step10: Calculate:
\(x=4\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=4\\y=-3\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x=4\\y=-3\end{array}\right.\)
- step13: Rewrite:
\(\left(x,y\right) = \left(4,-3\right)\)
Solve the system of equations \( 3 x-y=2;7 x-2 y=8 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}3x-y=2\\7x-2y=8\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}y=-2+3x\\7x-2y=8\end{array}\right.\)
- step2: Substitute the value of \(y:\)
\(7x-2\left(-2+3x\right)=8\)
- step3: Simplify:
\(x+4=8\)
- step4: Move the constant to the right side:
\(x=8-4\)
- step5: Subtract the numbers:
\(x=4\)
- step6: Substitute the value of \(x:\)
\(y=-2+3\times 4\)
- step7: Calculate:
\(y=10\)
- step8: Calculate:
\(\left\{ \begin{array}{l}x=4\\y=10\end{array}\right.\)
- step9: Check the solution:
\(\left\{ \begin{array}{l}x=4\\y=10\end{array}\right.\)
- step10: Rewrite:
\(\left(x,y\right) = \left(4,10\right)\)
Solve the system of equations \( x+y=1;x-2 y=1 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x+y=1\\x-2y=1\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=1-y\\x-2y=1\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(1-y-2y=1\)
- step3: Subtract the terms:
\(1-3y=1\)
- step4: Move the constant to the right side:
\(-3y=1-1\)
- step5: Subtract the terms:
\(-3y=0\)
- step6: Change the signs:
\(3y=0\)
- step7: Rewrite the expression:
\(y=0\)
- step8: Substitute the value of \(y:\)
\(x=1-0\)
- step9: Substitute back:
\(x=1\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=1\\y=0\end{array}\right.\)
- step11: Check the solution:
\(\left\{ \begin{array}{l}x=1\\y=0\end{array}\right.\)
- step12: Rewrite:
\(\left(x,y\right) = \left(1,0\right)\)
Solve the system of equations \( 2 x+2 y=2;5 x-2 y=-18 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}2x+2y=2\\5x-2y=-18\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=1-y\\5x-2y=-18\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(5\left(1-y\right)-2y=-18\)
- step3: Simplify:
\(5-7y=-18\)
- step4: Move the constant to the right side:
\(-7y=-18-5\)
- step5: Subtract the numbers:
\(-7y=-23\)
- step6: Change the signs:
\(7y=23\)
- step7: Divide both sides:
\(\frac{7y}{7}=\frac{23}{7}\)
- step8: Divide the numbers:
\(y=\frac{23}{7}\)
- step9: Substitute the value of \(y:\)
\(x=1-\frac{23}{7}\)
- step10: Calculate:
\(x=-\frac{16}{7}\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=-\frac{16}{7}\\y=\frac{23}{7}\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x=-\frac{16}{7}\\y=\frac{23}{7}\end{array}\right.\)
- step13: Rewrite:
\(\left(x,y\right) = \left(-\frac{16}{7},\frac{23}{7}\right)\)
Solve the system of equations \( x-y=8;2 x+y=10 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x-y=8\\2x+y=10\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=8+y\\2x+y=10\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(2\left(8+y\right)+y=10\)
- step3: Simplify:
\(16+3y=10\)
- step4: Move the constant to the right side:
\(3y=10-16\)
- step5: Subtract the numbers:
\(3y=-6\)
- step6: Divide both sides:
\(\frac{3y}{3}=\frac{-6}{3}\)
- step7: Divide the numbers:
\(y=-2\)
- step8: Substitute the value of \(y:\)
\(x=8-2\)
- step9: Calculate:
\(x=6\)
- step10: Calculate:
\(\left\{ \begin{array}{l}x=6\\y=-2\end{array}\right.\)
- step11: Check the solution:
\(\left\{ \begin{array}{l}x=6\\y=-2\end{array}\right.\)
- step12: Rewrite:
\(\left(x,y\right) = \left(6,-2\right)\)
Solve the system of equations \( x+4 y=14;3 x+2 y=12 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}x+4y=14\\3x+2y=12\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=14-4y\\3x+2y=12\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(3\left(14-4y\right)+2y=12\)
- step3: Simplify:
\(42-10y=12\)
- step4: Move the constant to the right side:
\(-10y=12-42\)
- step5: Subtract the numbers:
\(-10y=-30\)
- step6: Change the signs:
\(10y=30\)
- step7: Divide both sides:
\(\frac{10y}{10}=\frac{30}{10}\)
- step8: Divide the numbers:
\(y=3\)
- step9: Substitute the value of \(y:\)
\(x=14-4\times 3\)
- step10: Calculate:
\(x=2\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=2\\y=3\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x=2\\y=3\end{array}\right.\)
- step13: Rewrite:
\(\left(x,y\right) = \left(2,3\right)\)
Solve the system of equations \( 2 y-3 x=7;4 y-5 x=21 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}2y-3x=7\\4y-5x=21\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}x=\frac{-7+2y}{3}\\4y-5x=21\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(4y-5\times \frac{-7+2y}{3}=21\)
- step3: Simplify:
\(4y-\frac{5\left(-7+2y\right)}{3}=21\)
- step4: Multiply both sides of the equation by LCD:
\(\left(4y-\frac{5\left(-7+2y\right)}{3}\right)\times 3=21\times 3\)
- step5: Simplify the equation:
\(2y+35=63\)
- step6: Move the constant to the right side:
\(2y=63-35\)
- step7: Subtract the numbers:
\(2y=28\)
- step8: Divide both sides:
\(\frac{2y}{2}=\frac{28}{2}\)
- step9: Divide the numbers:
\(y=14\)
- step10: Substitute the value of \(y:\)
\(x=\frac{-7+2\times 14}{3}\)
- step11: Calculate:
\(x=7\)
- step12: Calculate:
\(\left\{ \begin{array}{l}x=7\\y=14\end{array}\right.\)
- step13: Check the solution:
\(\left\{ \begin{array}{l}x=7\\y=14\end{array}\right.\)
- step14: Rewrite:
\(\left(x,y\right) = \left(7,14\right)\)
Solve the system of equations \( 3 x+5 y=8;x-2 y=-1 \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}3x+5y=8\\x-2y=-1\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}3x+5y=8\\x=-1+2y\end{array}\right.\)
- step2: Substitute the value of \(x:\)
\(3\left(-1+2y\right)+5y=8\)
- step3: Simplify:
\(-3+11y=8\)
- step4: Move the constant to the right side:
\(11y=8+3\)
- step5: Add the numbers:
\(11y=11\)
- step6: Divide both sides:
\(\frac{11y}{11}=\frac{11}{11}\)
- step7: Divide the numbers:
\(y=1\)
- step8: Substitute the value of \(y:\)
\(x=-1+2\times 1\)
- step9: Substitute back:
\(x=-1+2\)
- step10: Calculate:
\(x=1\)
- step11: Calculate:
\(\left\{ \begin{array}{l}x=1\\y=1\end{array}\right.\)
- step12: Check the solution:
\(\left\{ \begin{array}{l}x=1\\y=1\end{array}\right.\)
- step13: Rewrite:
\(\left(x,y\right) = \left(1,1\right)\)
### Part (a): Solve for \( x \) and \( y \) using the method of substitution
1. **Equations (1)**:
\[
x - y = 8 \quad (1) \\
2x + y = 10 \quad (2)
\]
From equation (1), we can express \( y \) in terms of \( x \):
\[
y = x - 8
\]
Substituting this into equation (2):
\[
2x + (x - 8) = 10 \\
3x - 8 = 10 \\
3x = 18 \\
x = 6
\]
Now substituting \( x = 6 \) back into \( y = x - 8 \):
\[
y = 6 - 8 = -2
\]
**Solution**: \( (x, y) = (6, -2) \)
2. **Equations (2)**:
\[
3x - y = 2 \quad (1) \\
7x - 2y = 8 \quad (2)
\]
From equation (1), express \( y \):
\[
y = 3x - 2
\]
Substitute into equation (2):
\[
7x - 2(3x - 2) = 8 \\
7x - 6x + 4 = 8 \\
x + 4 = 8 \\
x = 4
\]
Substitute \( x = 4 \) back into \( y = 3x - 2 \):
\[
y = 3(4) - 2 = 12 - 2 = 10
\]
**Solution**: \( (x, y) = (4, 10) \)
3. **Equations (3)**:
\[
3x + 5y = 8 \quad (1) \\
x - 2y = -1 \quad (2)
\]
From equation (2), express \( x \):
\[
x = 2y - 1
\]
Substitute into equation (1):
\[
3(2y - 1) + 5y = 8 \\
6y - 3 + 5y = 8 \\
11y - 3 = 8 \\
11y = 11 \\
y = 1
\]
Substitute \( y = 1 \) back into \( x = 2y - 1 \):
\[
x = 2(1) - 1 = 1
\]
**Solution**: \( (x, y) = (1, 1) \)
4. **Equations (4)**:
\[
7x - 3y = 41 \quad (1) \\
3x - y = 17 \quad (2)
\]
From equation (2), express \( y \):
\[
y = 3x - 17
\]
Substitute into equation (1):
\[
7x - 3(3x - 17) = 41 \\
7x - 9x + 51 = 41 \\
-2x + 51 = 41 \\
-2x = -10 \\
x = 5
\]
Substitute \( x = 5 \) back into \( y = 3x - 17 \):
\[
y = 3(5) - 17 = 15 - 17 = -2
\]
**Solution**: \( (x, y) = (5, -2) \)
### Part (b): Solve for \( x \) and \( y \) using either the elimination or substitution method
1. **Equations (1)**:
\[
x + y = 1 \quad (1) \\
x - 2y = 1 \quad (2)
\]
From equation (1), express \( x \):
\[
x = 1 - y
\]
Substitute into equation (2):
\[
(1 - y) - 2y = 1 \\
1 - 3y = 1 \\
-3y = 0 \\
y = 0
\]
Substitute \( y = 0 \) back into \( x = 1 - y \):
\[
x = 1 - 0 = 1
\]
**Solution**: \( (x, y) = (1, 0) \)
2. **Equations (2)**:
\[
2x + 2y = 2 \quad (1) \\
5x - 2y = -18 \quad (2)
\]
Simplifying equation (1):
\[
x + y = 1 \quad (1)
\]
From equation (1), express \( y \):
\[
y = 1 - x
\]
Substitute into equation (2):
\[
5x - 2(1 - x) = -18 \\
5x - 2 + 2x = -18 \\
7x - 2 = -18 \\
7x = -16 \\
x = -\frac{16}{7}
\]
Substitute \( x = -\frac{16}{7} \) back into \( y = 1 - x \):
\[
y = 1 - \left(-\frac{16}{7}\right) = 1 + \frac{16}{7} = \frac{23}{7}
\]
**Solution**: \( (x, y) = \left(-\frac{16}{7}, \frac{23}{7}\right) \)
3. **Equations (3)**:
\[
x + 4y = 14 \quad (1) \\
3x + 2y = 12 \quad (2)
\]
From equation (1), express \( x \):
\[
x = 14 - 4y
\]
Substitute into equation (2):
\[
3(14 - 4y) + 2y = 12 \\
42 - 12y + 2y = 12 \\
42 - 10y = 12 \\
-10y = -30 \\
y = 3
\]
Substitute \( y
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución