Pregunta

Explain how the first derivative test can be used to determine local minima and maxima for a function f(x).

Ask by Love Mitchell. in South Africa
Nov 14,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The First Derivative Test finds local minima and maxima by calculating the first derivative, identifying critical points, and analyzing the sign changes of the derivative around these points.

Solución

The First Derivative Test is a method used to determine the local minima and maxima of a function \( f(x) \) by analyzing the sign changes of the first derivative of the function. Here's how the First Derivative Test works: 1. **Find the First Derivative**: Calculate the first derivative of the function \( f(x) \), denoted as \( f'(x) \). 2. **Find Critical Points**: Determine the critical points of the function by setting the first derivative equal to zero and solving for \( x \). These critical points are where the slope of the function changes. 3. **Test Intervals**: Divide the domain of the function into intervals based on the critical points. Test the sign of the first derivative in each interval. 4. **Determine Local Minima and Maxima**: - If the first derivative changes from positive to negative at a critical point, then that point is a local maximum. - If the first derivative changes from negative to positive at a critical point, then that point is a local minimum. By analyzing the sign changes of the first derivative around the critical points, we can determine the local minima and maxima of the function \( f(x) \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The first derivative test helps identify local minima and maxima by analyzing the behavior of the derivative \( f'(x) \). When \( f'(x) \) changes from positive to negative at a point \( c \), it indicates that \( f(c) \) is a local maximum, since the function is increasing before \( c \) and decreasing after. Conversely, if \( f'(x) \) changes from negative to positive at \( c \), then \( f(c) \) is a local minimum, as the function is decreasing prior to \( c \) and increasing afterwards. To effectively use this test, first locate the critical points by setting \( f'(x) = 0 \) or finding where \( f'(x) \) is undefined. Evaluate the derivative around these points to see how it behaves on either side. Just remember, if the derivative doesn't change sign, you have a point of inflection rather than a local extrema!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad