Pregunta
upstudy study bank question image url

Graph the function. Give the equations of the vertical and horizontal asymptotes. \( y=\frac{2-\mathrm{x}}{\mathrm{x}-6} \) Give the equations of any vertical asymptotes for the graph of the rational function. Select the correct choice and, if necessary, fil in the answer box(es) within your choice. A. The function has one vertical asymptote. The vertical asymptote is (Simplify your answer. Type an equation.) B. The function has two vertical asymptotes. The leftmost asymptote is \( \square \) and the rightmost asymptote is (Simplify your answers. Type equations.)

Ask by Martin Lyons. in the United States
Feb 02,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function has one vertical asymptote at \( x = 6 \).

Solución

**A.** The function has one vertical asymptote. The vertical asymptote is \[ x = 6 \] --- **Explanation:** To determine the vertical asymptotes of the rational function \( y = \frac{2 - x}{x - 6} \), follow these steps: 1. **Identify the Denominator:** The vertical asymptotes occur where the denominator is zero (since the function is undefined there). 2. **Set Denominator Equal to Zero:** \[ x - 6 = 0 \] \[ x = 6 \] 3. **Conclusion:** There is only one value of \( x \) that makes the denominator zero, which is \( x = 6 \). Therefore, the function has a single vertical asymptote at \( x = 6 \). --- **Additional Information:** - **Horizontal Asymptote:** For completeness, if you're also interested in the horizontal asymptote of the function: \[ y = \frac{2 - x}{x - 6} = \frac{-x + 2}{x - 6} \] The degrees of the numerator and denominator are both 1. The horizontal asymptote is determined by the ratio of the leading coefficients: \[ y = \frac{-1}{1} = -1 \] So, the horizontal asymptote is \( y = -1 \). - **Graphing the Function:** When graphing the function, you'll see that as \( x \) approaches 6 from either side, the function values will grow without bound (either positively or negatively), illustrating the vertical asymptote at \( x = 6 \). The function will approach \( y = -1 \) as \( x \) moves towards positive or negative infinity.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the vertical asymptotes of the function \( y=\frac{2-x}{x-6} \), you need to identify where the denominator equals zero since these are the points where the function is undefined. Setting \( x - 6 = 0 \) gives us \( x = 6 \). Therefore, the function has one vertical asymptote at \( x = 6 \). Now, for horizontal asymptotes, we analyze the degrees of the polynomial in the numerator and denominator. Since they are both linear (degree 1), we look at the leading coefficients. The horizontal asymptote is given by \( y = \frac{2}{1} = 2 \). So for the selections: A. The function has one vertical asymptote. The vertical asymptote is \( x=6 \). Additionally, keep in mind that functions like this can often present interesting behaviors! Like how vertical asymptotes create boundaries that the graph dances around, giving rise to amusing shapes and moments. Understanding these asymptotes can also help you predict the behavior of the function as \( x \) approaches those critical values. If you're plotting the graph, you might notice the graph will move towards the asymptotes but never actually touch them—making them significant guiding lines in your analysis!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad