Pregunta
upstudy study bank question image url

\begin{tabular}{l|l} Directions: Factor each polynomial. \\ \hline 1. \( x^{3}+x^{2}+2 x+2 \) & 2. \\ \hline\end{tabular}

Ask by Pearson Grant. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The polynomial \( x^{3}+x^{2}+2x+2 \) factors to \( (x + 1)(x^{2} + 2) \).

Solución

Factor the expression by following steps: - step0: Factor: \(x^{3}+x^{2}+2x+2\) - step1: Calculate: \(x^{3}+2x+x^{2}+2\) - step2: Rewrite the expression: \(x\times x^{2}+x\times 2+x^{2}+2\) - step3: Factor the expression: \(x\left(x^{2}+2\right)+x^{2}+2\) - step4: Factor the expression: \(\left(x+1\right)\left(x^{2}+2\right)\) Let's factor the polynomial \( x^{3}+x^{2}+2x+2 \) step by step. 1. **Group the terms**: We can group the polynomial into two parts: \[ (x^{3} + x^{2}) + (2x + 2) \] 2. **Factor out common factors from each group**: - From the first group \( x^{3} + x^{2} \), we can factor out \( x^{2} \): \[ x^{2}(x + 1) \] - From the second group \( 2x + 2 \), we can factor out \( 2 \): \[ 2(x + 1) \] 3. **Combine the factored groups**: Now we can combine the factored terms: \[ x^{2}(x + 1) + 2(x + 1) \] 4. **Factor out the common binomial factor \( (x + 1) \)**: \[ (x + 1)(x^{2} + 2) \] Thus, the factored form of the polynomial \( x^{3}+x^{2}+2x+2 \) is: \[ (x + 1)(x^{2} + 2) \] For the second polynomial, it seems there was an error in the input provided ("2."). If you have another polynomial to factor, please provide it, and I will assist you with that as well!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To factor the polynomial \( x^{3}+x^{2}+2x+2 \), we can group the terms. First, group them as follows: \[ (x^{3} + x^{2}) + (2x + 2) \] Factoring each group gives us: \[ x^{2}(x + 1) + 2(x + 1) \] Notice that \( (x + 1) \) is a common factor, so we can factor that out: \[ (x + 1)(x^{2} + 2) \] Now, \( x^{2} + 2 \) cannot be factored further using real numbers, but you could express it as \( (x + \sqrt{2}i)(x - \sqrt{2}i) \) if you venture into complex numbers. Therefore, the complete factorization over the reals is: \[ (x + 1)(x^{2} + 2) \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad