ADDITION AND SUBTRACTION OF RADICALS (Show your Solution) \( \begin{array}{ll}1.3 \sqrt{6}+6 \sqrt{6}+8 \sqrt{6}+4 \sqrt{6} & 2.4 \sqrt{a b}+2 \sqrt{a b}+5 \sqrt{a b}+11 \sqrt{a b}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
Let’s break down the additions and simplify step by step for both problems. 1. For \( 1.3 \sqrt{6} + 6 \sqrt{6} + 8 \sqrt{6} + 4 \sqrt{6} \): - First, combine the coefficients (the numbers in front of the radicals): \( 1.3 + 6 + 8 + 4 = 19.3 \). - So, the simplified expression is: \[ 19.3 \sqrt{6} \] 2. For \( 4 \sqrt{a b} + 2 \sqrt{a b} + 5 \sqrt{a b} + 11 \sqrt{a b} \): - Similarly, add the coefficients: \( 4 + 2 + 5 + 11 = 22 \). - Thus, the simplified expression becomes: \[ 22 \sqrt{a b} \] Putting it all together, the final results are: 1. \( 19.3 \sqrt{6} \) 2. \( 22 \sqrt{a b} \)
