Consider the parabola given by the equation: \( f(x)=2 x^{2}+14 x+9 \) Find the following for this parabola: A) The vertex: \( \left(-\frac{7}{2},-\frac{31}{2}\right) \) B) The vertical intercept is the point \( (0,9) \) C) Find the coordinates of the two \( x \)-intercepts of the parabola and write them as a list, separated by commas: It is OK to round your value(s) to to two decimal olaces.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the \( x \)-intercepts of the parabola given by the equation \( f(x)=2x^{2}+14x+9 \), we need to set \( f(x) = 0 \) and solve for \( x \). Start by rewriting the equation: \[ 2x^{2} + 14x + 9 = 0 \] Now, apply the quadratic formula, \( x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \), where \( a = 2 \), \( b = 14 \), and \( c = 9 \). Calculate the discriminant: \[ b^{2} - 4ac = 14^{2} - 4(2)(9) = 196 - 72 = 124 \] Now, plug in the values into the quadratic formula: \[ x = \frac{-14 \pm \sqrt{124}}{2(2)} \] Simplifying \( \sqrt{124} \): \[ \sqrt{124} = \sqrt{4 \cdot 31} = 2\sqrt{31} \] Now substituting back: \[ x = \frac{-14 \pm 2\sqrt{31}}{4} = \frac{-7 \pm \sqrt{31}}{2} \] This gives us two \( x \)-intercepts: 1. \( x_1 = \frac{-7 + \sqrt{31}}{2} \) 2. \( x_2 = \frac{-7 - \sqrt{31}}{2} \) Now rounding these values to two decimal places: - \( x_1 \approx 0.29 \) - \( x_2 \approx -7.29 \) So the \( x \)-intercepts of the parabola are approximately: \( 0.29, -7.29 \)
