Pregunta
upstudy study bank question image url

\( \sqrt { 16 + 3 ^ { 2 x } } = 3 ^ { x ^ { \prime } } + 2 \)

Ask by Griffin Logan. in South Africa
Nov 05,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation has no solution.

Solución

To solve the equation \[ \sqrt{16 + 3^{2x}} = 3^{x'} + 2, \] we start by squaring both sides to eliminate the square root: \[ 16 + 3^{2x} = (3^{x'} + 2)^2. \] Expanding the right side, we have: \[ (3^{x'} + 2)^2 = 3^{2x'} + 4 \cdot 3^{x'} + 4. \] Now, substituting this back into the equation gives us: \[ 16 + 3^{2x} = 3^{2x'} + 4 \cdot 3^{x'} + 4. \] Next, we can rearrange the equation: \[ 3^{2x} = 3^{2x'} + 4 \cdot 3^{x'} + 4 - 16. \] This simplifies to: \[ 3^{2x} = 3^{2x'} + 4 \cdot 3^{x'} - 12. \] Now, we can rewrite \(3^{2x}\) as \((3^x)^2\) and \(3^{2x'}\) as \((3^{x'})^2\). Let \(y = 3^x\) and \(z = 3^{x'}\). The equation becomes: \[ y^2 = z^2 + 4z - 12. \] Rearranging gives us a quadratic equation in \(y\): \[ y^2 - z^2 - 4z + 12 = 0. \] This can be factored or solved using the quadratic formula. The quadratic formula states that for an equation of the form \(ay^2 + by + c = 0\), the solutions for \(y\) are given by: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. \] In our case, we can treat \(y\) as a variable and rearrange the equation to: \[ y^2 - (z^2 + 4z - 12) = 0. \] To find \(y\), we can express it in terms of \(z\): \[ y = \sqrt{z^2 + 4z - 12}. \] Now, we need to ensure that the expression under the square root is non-negative: \[ z^2 + 4z - 12 \geq 0. \] To find the roots of the quadratic \(z^2 + 4z - 12 = 0\), we can use the quadratic formula: \[ z = \frac{-4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot (-12)}}{2 \cdot 1} = \frac{-4 \pm \sqrt{16 + 48}}{2} = \frac{-4 \pm \sqrt{64}}{2} = \frac{-4 \pm 8}{2}. \] This gives us the roots: \[ z = \frac{4}{2} = 2 \quad \text{and} \quad z = \frac{-12}{2} = -6. \] Since \(z = 3^{x'}\) must be non-negative, we only consider \(z \geq 2\). Now, we can substitute back to find \(y\): \[ y = \sqrt{z^2 + 4z - 12}. \] For \(z = 2\): \[ y = \sqrt{2^2 + 4 \cdot 2 - 12} = \sqrt{4 + 8 - 12} = \sqrt{0} = 0. \] This means \(3^x = 0\), which is not possible. For \(z > 2\), we can analyze the behavior of the function \(z^2 + 4z - 12\) and find that it is increasing. Thus, we can conclude that there are no valid solutions for \(x\) and \(x'\) that satisfy the original equation. Therefore, the solution to the equation is: \[ \text{No solution.} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the equation \( \sqrt{16 + 3^{2x}} = 3^{x'} + 2 \), we first want to eliminate the square root. Start by squaring both sides: \[ 16 + 3^{2x} = (3^{x'} + 2)^2 \] Next, expand the right-hand side: \[ 16 + 3^{2x} = 3^{2x'} + 4 \cdot 3^{x'} + 4 \] Rearranging leads us to: \[ 3^{2x} - 3^{2x'} - 4 \cdot 3^{x'} + 12 = 0 \] This is a quadratic equation in terms of \(3^{x'}\). You can let \(y = 3^{x'}\), thus transforming the equation into a standard quadratic form: \[ 3^{2x} - y^2 - 4y + 12 = 0 \] Now you can apply the quadratic formula or factor this equation to find solutions for \(y\). To find exact \(x\) and \(x'\) values, you'd substitute back \(y = 3^{x'}\) after solving for \(y\). Happy calculating!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad