Pregunta
upstudy study bank question image url

A particle moves along the polar curve \( r=-2 \sin (-3 \theta) \) in such a way that the distance between the particle and the origin increases at a constant rate of 4 units per second. Find the rate at which the angle \( \theta \) changes with respect to time at the instant when the position of the particle corresponds to \( \theta=0 \), rounding to the nearest thousandth.

Ask by Weston Marsh. in the United States
Mar 10,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

At \(\theta = 0\), the rate at which the angle \(\theta\) changes with respect to time is approximately 0.667 radians per second.

Solución

Given the polar equation \[ r = -2 \sin(-3\theta), \] we start by using the identity \[ \sin(-3\theta) = - \sin(3\theta) \] to rewrite the equation as \[ r = -2(-\sin(3\theta)) = 2 \sin(3\theta). \] The problem states that the distance between the particle and the origin increases at a constant rate of 4 units per second, so \[ \frac{dr}{dt} = 4. \] Since \( r = 2 \sin(3\theta) \), we differentiate with respect to time using the chain rule: \[ \frac{dr}{dt} = \frac{d}{dt}[2 \sin(3\theta)] = 2 \cos(3\theta) \cdot 3 \frac{d\theta}{dt} = 6 \cos(3\theta) \frac{d\theta}{dt}. \] Setting this equal to 4 gives \[ 6 \cos(3\theta) \frac{d\theta}{dt} = 4. \] We now solve for \(\frac{d\theta}{dt}\): \[ \frac{d\theta}{dt} = \frac{4}{6 \cos(3\theta)} = \frac{2}{3 \cos(3\theta)}. \] At the instant when \(\theta = 0\), we have \[ \cos(3 \cdot 0) = \cos(0) = 1. \] Thus \[ \frac{d\theta}{dt} = \frac{2}{3 \cdot 1} = \frac{2}{3} \approx 0.667 \text{ radians per second}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the problem, we need to find the rate at which the angle \( \theta \) changes with respect to time, \( \frac{d\theta}{dt} \), when \( \theta = 0 \). We start with the polar equation given: \[ r = -2 \sin(-3\theta) = 2 \sin(3\theta) \] because \( \sin(-x) = -\sin(x) \). Next, we find \( \frac{dr}{dt} \) using the chain rule: \[ \frac{dr}{dt} = \frac{dr}{d\theta} \cdot \frac{d\theta}{dt} \] We first compute \( \frac{dr}{d\theta} \): \[ \frac{dr}{d\theta} = \frac{d}{d\theta}(2 \sin(3\theta)) = 2 \cdot 3 \cos(3\theta) = 6 \cos(3\theta) \] Now we know that the distance from the origin is increasing at a constant rate of 4 units per second, so \( \frac{dr}{dt} = 4 \). Substituting this in, we have: \[ 4 = 6 \cos(3\theta) \cdot \frac{d\theta}{dt} \] Next, we evaluate this at \( \theta = 0 \): \[ \cos(3 \cdot 0) = \cos(0) = 1 \] Thus, the equation simplifies to: \[ 4 = 6 \cdot 1 \cdot \frac{d\theta}{dt} \] Solving for \( \frac{d\theta}{dt} \): \[ \frac{d\theta}{dt} = \frac{4}{6} = \frac{2}{3} \] Now, rounding to the nearest thousandth, we find: \[ \frac{d\theta}{dt} \approx 0.667 \] Therefore, the rate at which the angle \( \theta \) changes with respect to time when \( \theta = 0 \) is approximately: \[ \boxed{0.667} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad