Find two rational numbers greater than \( \frac{1}{4} \) whose product is less than \( \frac{1}{4} \). Explain.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
One example of two rational numbers that are greater than \( \frac{1}{4} \) but whose product is less than \( \frac{1}{4} \) is \( \frac{1}{2} \) and \( \frac{1}{3} \). Both \( \frac{1}{2} \) and \( \frac{1}{3} \) are greater than \( \frac{1}{4} \) since \( \frac{1}{2} = 0.5 \) and \( \frac{1}{3} \approx 0.33 \). When we multiply them together, \( \frac{1}{2} \times \frac{1}{3} = \frac{1}{6} \). The value \( \frac{1}{6} \) is approximately \( 0.1666 \), which is indeed less than \( \frac{1}{4} = 0.25 \). Another pair can be \( \frac{5}{16} \) and \( \frac{3}{8} \). Here, \( \frac{5}{16} \) (which is around \( 0.3125 \)) and \( \frac{3}{8} \) (approx. \( 0.375 \)) are both greater than \( \frac{1}{4} \). Their product is \( \frac{5}{16} \times \frac{3}{8} = \frac{15}{128} \), and since \( \frac{15}{128} \approx 0.1171875 \), it's also less than \( \frac{1}{4} \). These pairs showcase how you can find rational numbers fitting the parameters you requested!
