Find the minimum value of the parabola \( y=x^{2}+6 x \). Simplify your answer and write it as a proper fraction, improper fraction, or integer.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the minimum value of the parabola given by the equation \( y = x^2 + 6x \), we can complete the square. First, we can rewrite the quadratic expression: \[ y = x^2 + 6x \] Next, we complete the square: \[ y = (x^2 + 6x + 9) - 9 \] This simplifies to: \[ y = (x + 3)^2 - 9 \] The expression \((x + 3)^2\) represents a parabola that opens upwards and is always non-negative. The minimum value occurs when \((x + 3)^2 = 0\), which happens when \(x = -3\). By plugging \(x = -3\) back into the equation, we find the minimum value: \[ y = (0) - 9 = -9 \] Thus, the minimum value of the parabola \(y = x^2 + 6x\) is \[ \boxed{-9}. \]
