Let \( f(x)=\sqrt{5 x-2} \) and \( g(x)=\frac{1}{x} \). Find \( (f+g)(x),(f-g)(x),(f g)(x) \), and \( \left(\frac{f}{g}\right)(x) \). Give the domain of each. \( (f+g)(x)=\square \) (Simplify your answer.)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find \( (f+g)(x) \), we add the two functions together: \[ (f+g)(x) = f(x) + g(x) = \sqrt{5x - 2} + \frac{1}{x} \] Next, we need to determine the domain of \( (f+g)(x) \). 1. For \( f(x) = \sqrt{5x - 2} \), the argument must be non-negative: \( 5x - 2 \geq 0 \) leads to \( x \geq \frac{2}{5} \). 2. For \( g(x) = \frac{1}{x} \), \( x \) cannot be zero. Combining these conditions, the domain of \( (f+g)(x) \) is \( x \geq \frac{2}{5} \) and \( x \neq 0 \). Since \( \frac{2}{5} \) is greater than zero, the domain simplifies to \( x \geq \frac{2}{5} \). Putting it all together: \[ (f+g)(x) = \sqrt{5x - 2} + \frac{1}{x}, \text{ Domain: } x \geq \frac{2}{5}. \]
