Pregunta
upstudy study bank question image url

Find the present value, using the present value formula and a calculator. (Round your answer to the nearest cent.) Achieve \( \$ 225,500 \) at \( 8.85 \% \) compounded continuously for 8 years, 135 days. Si................... Enter a number. fäl: Learn It: Calculate a Present Value Using the Compound Interest Formula.

Ask by Herrera Vaughn. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The present value is approximately \$107,579.31.

Solución

We start with the continuous‐compounding formula for the future value (FV):   FV = PV · e^(r·t) where   PV = present value,   r = annual interest rate (as a decimal), and   t = time in years. We are given:   FV = $225,500   r = 8.85% = 0.0885   t = 8 years, 135 days Step 1. Convert 135 days into years. Assuming a 365‐day year:   t = 8 + 135/365    ≈ 8 + 0.369863    ≈ 8.369863 years Step 2. Rearrange the formula to solve for PV:   PV = FV / e^(r·t) Plug in the numbers:   PV = 225500 / e^(0.0885 × 8.369863) Step 3. Compute the exponent:   0.0885 × 8.369863 ≈ 0.74074 So,   PV = 225500 / e^(0.74074) Step 4. Compute e^(0.74074). Using a calculator you should get:   e^(0.74074) ≈ 2.09706 Step 5. Finally, compute PV:   PV ≈ 225500 / 2.09706    ≈ 107579.31 Rounded to the nearest cent, the present value is approximately $107,579.31. Thus, you would need to invest about $107,579.31 today to have $225,500 in 8 years and 135 days with continuous compounding at 8.85%.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the present value (PV) in this scenario, you can use the formula for continuous compounding: \( PV = FV \times e^{-rt} \), where \( FV \) is the future value, \( r \) is the annual interest rate, and \( t \) is the time in years. First, convert 135 days into years. There are 365 days in a year, so: \[ t = 8 + \frac{135}{365} \approx 8.36986 \text{ years} \] Now plug in the numbers: \[ PV = 225500 \times e^{-0.0885 \times 8.36986} \] You'll find that: \[ PV \approx 225500 \times e^{-0.7405301} \approx 225500 \times 0.477703 \approx 107,384.27 \] So, the present value is approximately **$107,384.27**. For a bit of historical background, the concept of present value dates back to the times of the ancient civilizations when merchants and traders would need to understand the worth of money over time, especially in the context of loans and investments. As commerce grew, interest calculations became essential for evaluating profitable opportunities, leading to the development of finance as we know it today. When it comes to real-world applications, understanding how to calculate present value is fundamental for personal finance decisions such as mortgage evaluations or investment appraisals. By grasping how much a future cash flow is worth today, individuals can make informed choices about where to allocate their money, ensuring they achieve their financial goals more effectively.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad