Pregunta
upstudy study bank question image url

The height of a ball after being dropped from a point 110 feet above the ground is given by \( h=-16 t^{2}+110 \), where \( t \) is the time in seconds since the ball was dropped and \( h \) is in feet. Round all answers to 2 decimal places, where necessary. a. When will the ball be 83 feet above the ground? After beconds. When wil the ball reach the ground? After c. For what values of \( t \) does the problem make sense (from a physical standpoint)? Answer in interval notation.

Ask by Gough Hilton. in the United States
Jan 30,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. The ball is 83 feet above the ground after **1.30 seconds**. b. The ball reaches the ground after **2.62 seconds**. c. The problem is valid for \( t \) in the interval **\[0, 2.62\]**.

Solución

Let's analyze the problem step by step. Given the height function: \[ h(t) = -16t^2 + 110 \] where: - \( h(t) \) is the height in feet, - \( t \) is the time in seconds after the ball is dropped. ### a. When will the ball be **83 feet** above the ground? Set \( h(t) = 83 \) and solve for \( t \): \[ -16t^2 + 110 = 83 \] \[ -16t^2 = 83 - 110 \] \[ -16t^2 = -27 \] \[ t^2 = \frac{27}{16} \] \[ t = \sqrt{\frac{27}{16}} = \frac{3\sqrt{3}}{4} \approx 1.30 \text{ seconds} \] **Answer:** The ball is 83 feet above the ground after **1.30 seconds**. --- ### b. When will the ball **reach the ground**? The ball reaches the ground when \( h(t) = 0 \). \[ -16t^2 + 110 = 0 \] \[ -16t^2 = -110 \] \[ t^2 = \frac{110}{16} = 6.875 \] \[ t = \sqrt{6.875} \approx 2.62 \text{ seconds} \] **Answer:** The ball reaches the ground after **2.62 seconds**. --- ### c. For what values of \( t \) does the problem make sense (from a physical standpoint)? Physically, time \( t \) cannot be negative, and the motion is only valid from the moment the ball is dropped until it hits the ground. From part **b**, we know the ball hits the ground at \( t \approx 2.62 \) seconds. **Answer:** The values of \( t \) are in the interval **\[0, 2.62\]**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find when the ball will be 83 feet above the ground, set the equation \( h = -16t^2 + 110 \) equal to 83: \[ 83 = -16t^2 + 110 \implies -16t^2 = 83 - 110 \implies -16t^2 = -27 \implies t^2 = \frac{27}{16} \implies t = \sqrt{\frac{27}{16}} \approx 1.30 \text{ seconds.} \] Now, to find when the ball reaches the ground, set \( h = 0 \): \[ 0 = -16t^2 + 110 \implies 16t^2 = 110 \implies t^2 = \frac{110}{16} \implies t = \sqrt{\frac{110}{16}} \approx 2.60 \text{ seconds.} \] For physical relevance, the time \( t \) must be non-negative; thus, \( t \) must be in the interval \([0, \sqrt{\frac{110}{16}}]\) or approximately \([0, 2.6]\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad